Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn kham khảo tại link:
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N, E là ba điểm lần lượt lấy trên AD, CD, SO. Tìm thiết diện của hình chóp bởi ( MNP) - Hình học không gian - Diễn đàn Toán học
Copy và dán:
https://diendantoanhoc.net/topic/125716-cho-h%C3%ACnh-ch%C3%B3p-sabcd-c%C3%B3-%C4%91%C3%A1y-l%C3%A0-h%C3%ACnh-b%C3%ACnh-h%C3%A0nh-t%C3%A2m-o-g%E1%BB%8Di-m-n-e-l%C3%A0-ba-%C4%91i%E1%BB%83m-l%E1%BA%A7n-l%C6%B0%E1%BB%A3t-l%E1%BA%A5y-tr%C3%AAn-ad-cd-so-t%C3%ACm-thi%E1%BA%BFt-di%E1%BB%87/
Học tốt!
a, Xét tam giác ABC có:
AC2+AB2=242+182=900=302=BC2AC2+AB2=242+182=900=302=BC2⇒⇒ Tam giác ABC vuông tại A
Xét tam giác ABC và MDC có:
DMCˆ=BACˆDMC^=BAC^
CˆC^ là góc chung
⇒⇒ Tam giác ABC ~MDC ( g.g)
b, Vì tam giác ABC~MDC ⇒ABAC=MDMC=34⇒MD=3MC4⇒ABAC=MDMC=34⇒MD=3MC4ACBC=MCDC=45⇒DC=5MC4ACBC=MCDC=45⇒DC=5MC4
Mà:
ABMD=BCDC=ACMC=AB+BC+ACMD+DC+MC=723MC4+5MC4+4MC4ABMD=BCDC=ACMC=AB+BC+ACMD+DC+MC=723MC4+5MC4+4MC4=7212MC3⇒12MC=72.3=216⇒MC=18cm=7212MC3⇒12MC=72.3=216⇒MC=18cm⇒MD=3.184=13,5cm⇒MD=3.184=13,5cm
⇒DC=5.184=22,5cm
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
Xét tứ giác OBMC ta có
2 đường chéo BC và OM cắt nhau tại I
I là trung điểm BC (gt)
I là trung điểm OM ( M là điểm đối xứng của O qua I)
-> tứ giác OBMC là hbh
cmtt tứ giác ODNC là hbh
ta có
BM // OC ( OBMC là hbh)
DN // OC (ODNC là hbh)
-.> BM//CN
ta có
BM // OC ( OBMC là hbh)
DN // OC (ODNC là hbh)
-.> BM//CN // OC
ta có
BM = OC ( OBMC là hbh)
DN = OC (ODNC là hbh)
-.> BM = ON
Xét tứ giác BMND ta có
BM // ON (cmt)
BM = ON (cmt)
-> tứ giác BMND là hbh
b) giả sử BMND là hcn
ta có
MB vuông góc BD ( BNMD là hcn)
BM // OC ( OBMC là hbh)
-> BD vuông góc OC tại O
Vậy AC vuông góc BD thì BMND là hcn
c) ta có
BD // CM ( OB // CM ; O thuộc BD)
BD // CN ( OD //CN . O thuộc BD)
-> CM trùng CN
-> C,N,M thẳng hàng