K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2018

Phương pháp:

- Sử dụng phương pháp tọa độ trong không gian, gắn hệ trục tọa độ gốc A và các trục tọa độ sao cho 

 - Sử dụng các công thức điểm, véc tơ, mặt phẳng, góc giữa hai mặt phẳng để tính toán.

Cách giải:

Gắn hệ trục tọa độ như hình vẽ, giả sử ABCD là hình vuông cạnh l,

chiều cao hình chóp SH = h.

4 tháng 2 2019

Chọn A

26 tháng 11 2017

Chọn C.

Phương pháp:

Thể tích của khối chóp ngoại tiếp hình chóp

Cách giải:

Gọi O là tâm của hình vuông ABCD, I là trung điểm của BC.

15 tháng 4 2017

Chọn A

3 tháng 12 2019

9 tháng 9 2019

Đáp án C

Ta có, CD song song mặt phẳng (SAB) chứa SA nên khoảng cách giữa SA CD chính là khoảng cách từ CD đến (SAB).

Gọi I, K theo thứ tự là trung điểm AB, CD thì:

22 tháng 12 2019

Đáp án D

Gọi I ∈ C D  sao cho  H I / / A D .

Ta có H I A D = C H C A ⇔ H I = A D . C H C A = 2 a . 3 4 = 3 a 2 .  

Và H D = D O 2 + H O 2 = D O 2 + D O 2 4 = D O 5 2 .  

Mà 2 D O 2 = 4 a 2 ⇒ D O = a 2  

⇒ H D = a 2 . 5 2 = a 10 2 ⇒ S H = H D . tan 60 ∘ = a 30 2 .  

Vậy α = S I H ^ ⇒ tan α = S H H I = a 30 2 3 a 2 = 30 2 .

23 tháng 2 2017

18 tháng 3 2018

Chọn D.

Phương pháp: 

+ Chứng minh: O là tâm mặt cầu ngoại tiếp tứ diện CMNP (với O là tâm của hình vuông ABCD)