K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 11 2019

\(\frac{BB'}{SB}=\frac{CC'}{SC}=\frac{1}{3}\Rightarrow B'C'//BC\Rightarrow B'C'//\left(ABC\right)\)

\(\frac{AA'}{SA}=\frac{CC'}{SC}=\frac{1}{3}\Rightarrow A'C'//AC\Rightarrow A'C'//\left(ABC\right)\)

24 tháng 12 2023

1

24 tháng 12 2023

1

NV
7 tháng 1

a/ Gọi M là trung điểm BC, nối SM cắt B'C' tại M'

Trong mặt phẳng (SAM), nối SG cắt A'M' tại Q

Q là giao điểm SG và (P)

b/ Ủa sao điểm D chẳng liên quan gì vậy ta, 2 câu rồi em nó vẫn bị ngó lơ.

Trong mặt phẳng (SCD), qua B và C lần lượt kẻ các đường thẳng song song SM, cắt B'C' kéo dài tại \(B_1\)\(C_1\)

Áp dụng talet: \(\frac{BB_1}{SM'}=\frac{BB'}{SB'}\Rightarrow1+\frac{BB_1}{SM'}=\frac{BB'}{SB'}+1=\frac{SB}{SB'}\)

Tương tự ta có: \(1+\frac{CC_1}{SM'}=\frac{SC}{SC'}\)

Cộng vế với vế: \(2+\frac{BB_1+CC_1}{SM'}=\frac{SB}{SB'}+\frac{SC}{SC'}\)

\(BB_1+CC_1=2MM'\) (t/c đường trung bình hình thang)

\(\Rightarrow2+\frac{2MM'}{SM'}=\frac{SB}{SB'}+\frac{SC}{SC'}\Rightarrow\frac{SB}{SB'}+\frac{SC}{SC'}=\frac{2\left(SM'+MM'\right)}{SM'}=\frac{2SM}{SM'}\)

Gọi N là trung điểm AM, trong mp (SAM), SN cắt A'M' tại N'

Hoàn toàn tương tự, ta có: \(\frac{SA}{SA'}+\frac{SM}{SM'}=\frac{2SN}{SN'}\)

\(\Rightarrow\frac{2SA}{SA'}+\frac{SB}{SB'}+\frac{SC}{SC'}=\frac{2SA}{SA'}+\frac{2SM}{SM'}=\frac{4SN}{SN'}\)

\(\Rightarrow\frac{4SN}{SN'}=8\Rightarrow SN'=\frac{1}{2}SN\)

\(\Rightarrow N'\) là trung điểm SN

Mà A; M; S cố định \(\Rightarrow N'\) cố định

\(\Rightarrow\left(P\right)\) luôn đi qua điểm N' cố định

ak e xl, cho hình chóp S.ABC

NV
5 tháng 4 2019

(P) cắt SB, SC, SD mới đúng, (P) đã cắt AB tại A rồi cơ mà

Từ A kẻ \(AC'\perp SC\), trong các mặt pẳng (SCD) và (SBC) từ C' lần lượt kẻ các đường thẳng vuông góc SC cắt SD và SB tại D' và B'

Gọi cạnh bên của hình chóp là \(SA=SB=SC=SD=x\Rightarrow SB'=\frac{2x}{3}\)

Áp dụng định lý hàm cos: \(cos\widehat{ASC}=\frac{2x^2-2a^2}{2x^2}\); \(cos\widehat{BSC}=\frac{2x^2-a^2}{2x^2}\)

Trong tam giác vuông SAC':\(SC'=SA.cos\widehat{ASC}=\frac{2x^2-2a^2}{2x}\)

Trong tam giác vuông SB'C': \(SC'=SB'.cos\widehat{BSC}=\frac{2x^2-a^2}{3x}\)

\(\Rightarrow\frac{2x^2-2a^2}{2x}=\frac{2x^2-a^2}{3x}\Rightarrow x=a\sqrt{2}\)

\(\Rightarrow SC'=\frac{a\sqrt{2}}{2}\Rightarrow\frac{SC'}{SC}=\frac{1}{2}\)

Do tính đối xứng của hình chóp đều \(\Rightarrow\frac{SD'}{SD}=\frac{SB'}{SB}=\frac{2}{3}\)

Áp dụng công thức Simsons ta có:

\(V_{S.AB'C'D'}=\frac{1}{4}.\frac{2}{3}.\frac{2}{3}.\frac{1}{2}\left(1+\frac{3}{2}+\frac{3}{2}+2\right)V_{S.ABCD}=\frac{1}{3}V_{SABCD}=\frac{a^3\sqrt{6}}{18}\)

\(\Rightarrow S_{AB'C'D'}=\frac{3V_{S.AB'C'D'}}{SC'}=\frac{a^2\sqrt{3}}{3}\)

b/Gọi O là tâm đáy, M là trung điểm BC \(\Rightarrow OM\perp BC\Rightarrow BC\perp\left(SOM\right)\)

\(AD//\left(SBC\right)\Rightarrow d\left(AD;B'C'\right)=d\left(AD;\left(SBC\right)\right)=2.d\left(O;\left(SBC\right)\right)\)

Từ O kẻ \(OH\perp SM\Rightarrow OH\perp\left(SBC\right)\Rightarrow OH=d\left(O;\left(SBC\right)\right)\)

\(SO=\frac{SC.\sqrt{3}}{2}=\frac{a\sqrt{6}}{2}\)

\(\frac{1}{OH^2}=\frac{1}{SO^2}+\frac{1}{OM^2}\Rightarrow OH=\frac{SO.OM}{\sqrt{SO^2+OM^2}}=\frac{a\sqrt{42}}{14}\)

\(\Rightarrow d\left(AD;B'C'\right)=\frac{a\sqrt{42}}{7}\)