Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Góc giữa SC và mặt đáy bằng 45 o ⇒ S C A ^ = 45 o
Xét tam giác SAC vuông tại A, ta có
Dựng hình bình hành ACBE
Gọi H là hình chiếu của A lên mặt phẳng (SBE).
Xét hình tứ diện vuông SABE có
Chọn C.
Dễ thấy BD ⊥ SC, nên BD // (AB'C'D'), suy ra BD // B'D'.
Gọi I = AC ∩ BD, J = AC' ∩ SI, khi đó J là trọng tâm của tam giác SAC và J ∈ B'D'.
Suy ra
Do đó dễ thấy
Chọn B.
Dễ thấy AB ⊥ BC. Suy ra SB ⊥ BC, ∆ SMN đồng dạng với ∆ SCB, do đó
Đáp án là D
Do SB = SC = 11 và do đó BC = 11
Ta lại có, SA = SC = 11 và vuông cân tại S hay AC = 11 2
Mặt khác, SA = SB = 11 và
Từ đó, ta có suy ra ∆ ABC vuông tại C
Gọi H là trung điểm của AB Khi đó, H là tâm đường tròn ngoại tiếp ∆ ABC. Vì SA = SB = SC nên SH ⊥ (ABC)
Gọi M là điểm trên CD sao cho HM ⊥ AB suy ra HM ⊥ CD. Gọi N là chân đường vuông góc hạ từ C xuống AB. Khi đó, HM//CN và HM = CN. Do ∆ ABC vuông tại C nên theo công thức tính diện tích ta có:
Ta lại có, nên
Trong tam giác vuông SHM dựng đường cao HI(I ∈ SM) suy ra HI ⊥ (SCD). Khi đó,
Chọn C
Vì SA=SB=SC suy ra tam giác SAB và tam giác SAC cân tại S. Vậy B′,C′ lần lượt là trung điểm của AB,AC
Ta có
Đáp án là C
+) Từ giả thiết có AB = a, BC = a 2 , AC =a 3 , suy ra tam giác ABC vuông tại B .
+) Gọi H là trung điểm của AC .
+) Ta có
=> SH là trục đường tròn ngoại tiếp tam giác ABC => SH ⊥(ABC)
+) Kẻ đường thẳng d qua B và song song với AC .
+) Gọi ( α ) là mặt phẳng chứa SB và d
=> AC//( α ) => d(AC, SB) = d (AC,( α )) = d (H, ( α )) .
+) Kẻ HF ⊥ d , F ∈ d và kẻ HK⊥ SF, K ∈ SF
=> HK ⊥ ( α ) => d(H,( α )) =HK.
+) Kẻ BE⊥ AC , E ∈ AC .
Cách 2: Toạ độ hoá
Áp dụng định lí Cosin
trong tam giác BSC, tam giác ASC ta dễ dàng tính được BC = a 2 , AC =a 3 . Suy ra tam giác ABC vuông tại B.
Gắn hệ trục Oxyz như hình vẽ khi đó tọa độ các điểm:
A(a;0;0), B(0;0;0), C(0;a 2 ;0), S a 2 ; a 2 2 ; a 2
(Trắc nghiệm)
Cho a = 2 thì A(2;0;0), C(0;2 2;0), S (1, 2,1), B(0;0;0).
Khoảng cách
Đáp số bài toán là: d = a 22 11