Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: SO vuông góc (ABC)
=>(SGO) vuông góc (ABC)
b: ((SAB);(ABC))=(SG;AG)=góc SGA
\(AG=\dfrac{a\sqrt{3}}{3}\)
cos SGA=AG/SA=căn 3/3:2=căn 3/6
=>góc SGA=73 độ
1.
Gọi O là giao điểm AC và BD, Q là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}SO\perp\left(ABCD\right)\\OQ\perp AB\end{matrix}\right.\)
\(\Rightarrow AB\perp\left(SOQ\right)\)
Từ O kẻ \(OH\perp SQ\Rightarrow OH\perp\left(SAB\right)\Rightarrow OH=d\left(O;\left(SAB\right)\right)\)
\(OQ=\dfrac{BC}{2}=\dfrac{AB}{2}=\dfrac{a}{2}\) ; \(SO=\sqrt{SA^2-\left(\dfrac{BD}{2}\right)^2}=\dfrac{a\sqrt{6}}{2}\)
\(\dfrac{1}{OH^2}=\dfrac{1}{OQ^2}+\dfrac{1}{SO^2}=\dfrac{14}{3a^2}\Rightarrow OH=a\sqrt{\dfrac{14}{3}}\)
\(d\left(P;\left(SAB\right)\right)=2d\left(O;\left(SAB\right)\right)=2OH=2a\sqrt{\dfrac{14}{3}}\)
2.
Câu này đề đúng ko nhỉ? Vì thấy quá nhiều dữ kiện thừa thãi.
Từ \(\overrightarrow{IA}=-2\overrightarrow{IH}\Rightarrow I;A;H\) thẳng hàng
Mà ABC vuông cân tại A \(\Rightarrow AI\perp BC\Rightarrow AH\perp BC\)
Từ K kẻ \(KP||BC\) (P thuộc AH) \(\Rightarrow KP\perp AH\)
\(\left\{{}\begin{matrix}KP\in\left(SAB\right)\Rightarrow SH\perp KP\\KP\perp AH\end{matrix}\right.\) \(\Rightarrow KP\perp\left(SAH\right)\)
\(\Rightarrow KP=d\left(K;\left(SAH\right)\right)\)
\(KP=\dfrac{1}{2}IB\) (đường trung bình); \(IB=\dfrac{1}{2}BC=\dfrac{1}{2}AB\sqrt{2}=a\Rightarrow KP=\dfrac{a}{2}\)
Gọi D là hình chiếu vuông góc của S lên (ABC)
\(SD\perp\left(ABC\right)\Rightarrow SD\perp AB\) , mà \(AB\perp SA\left(gt\right)\Rightarrow AB\perp\left(SAD\right)\Rightarrow AB\perp AD\)
\(\Rightarrow AD||BC\)
Tương tự ta có: \(BC\perp\left(SCD\right)\Rightarrow BC\perp CD\Rightarrow CD||AB\)
\(\Rightarrow\) Tứ giác ABCD là hình vuông
\(\Rightarrow BD=a\sqrt{2}\)
\(SD=\sqrt{SB^2-BD^2}=a\sqrt{2}\)
Gọi P là trung điểm AD \(\Rightarrow MP\) là đường trung bình tam giác SAD
\(\Rightarrow\left\{{}\begin{matrix}MP=\dfrac{1}{2}SD=\dfrac{a\sqrt{2}}{2}\\MP||SD\Rightarrow MP\perp\left(ABC\right)\end{matrix}\right.\)
\(\Rightarrow\alpha=\widehat{MNP}\)
\(cos\alpha=\dfrac{NP}{MN}=\dfrac{NP}{\sqrt{NP^2+MP^2}}=\dfrac{a}{\sqrt{a^2+\dfrac{a^2}{2}}}=\dfrac{\sqrt{6}}{3}\)
Lời giải:
Gọi $O$ là tâm đáy thì $SO\perp (ABCD)$
Ta thấy:
$BO\perp AC, BO\perp SO\Rightarrow BO\perp (AC, SO)$
Hay $BO\perp (SAC)(*)$
Gọi $T$ là trung điểm $AB$, $OH\perp ST$.
$OT\perp AB$
$SO\perp AB$
$\Rightarrow (SOT)\perp AB$
$\Rightarrow OH\perp AB$
Mà $OH\perp ST$
$\Rightarrow OH\perp (AB, ST)$ hay $OH\perp (SAB)(**)$
Từ $(*); (**)\Rightarrow \cos a=\cos \widehat{HOB}$
Trong đó:
$BO=\frac{2\sqrt{2}}{2}=\sqrt{2}$
$SO=\sqrt{SB^2-BO^2}=\sqrt{(2\sqrt{2})^2-(\sqrt{2})^2}=\sqrt{6}$
$ST=\sqrt{SO^2+OT^2}=\sqrt{6+1}=\sqrt{7}$
$OH=\frac{SO.OT}{ST}=\frac{\sqrt{6}.1}{\sqrt{7}}=\sqrt{\frac{6}{7}}$
Vì $OH\perp (SAB)$ nên tam giác $BHO$ vuông tại $H$. Do đó:
$\cos a=\cos \widehat{HOB}=\frac{HO}{OB}=\frac{\sqrt{6}}{\sqrt{7}.\sqrt{2}}=\frac{\sqrt{3}}{\sqrt{7}}$
Chọn A
Xác định được
Do M là trung điểm của cạnh AB nên
Tam giác vuông SAM có
Chọn A
Gọi H là trung điểm của AC. Đỉnh S cách đều các điểm A, B, C
=> SH ⊥ (ABC)
Xác đinh được
Ta có MH // SA
Gọi I là trung điểm của AB => HI ⊥ AB
và chứng minh được HK ⊥ (SAB)
Trong tam giác vuông SHI tính được
K thuộc SC nên (KBC) cũng là (SBC)
Từ A kẻ \(AH\perp SB\) (H thuộc SB)
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp AH\)
\(\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH=d\left(A;\left(KBC\right)\right)=\dfrac{a}{\sqrt{2}}\)
Hệ thức lượng: \(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}\Rightarrow SA=\dfrac{AH.AB}{\sqrt{AB^2-AH^2}}=a\)
(tới đây nếu sử dụng kiến thức 12 tọa độ hóa thì bài toán được giải quyết nhanh gọn, còn làm kiểu hình thuần 11 hơi dài)
\(\Rightarrow SA=AB\Rightarrow\Delta SAB\) cân tại A \(\Rightarrow AH\) đồng thời là trung tuyến \(\Rightarrow G\) thuộc AH
\(\Rightarrow\left(AGK\right)\) trùng mặt phẳng \(\left(AHK\right)\)
Trong mp (SBC), nối HK cắt BC kéo dài tại E
\(\Rightarrow AE=\left(ABC\right)\cap\left(AGK\right)\) (1)
Theo cmt \(AH\perp\left(SBC\right)\Rightarrow AH\perp SC\Rightarrow SC\perp\left(AGK\right)\Rightarrow SC\perp AE\)
\(SA\perp\left(ABC\right)\Rightarrow SA\perp AE\)
\(\Rightarrow AE\perp\left(SAC\right)\) (2)
(1);(2) \(\Rightarrow\widehat{CAK}\) là góc giữa (ABC) và (AGK)
Hệ thức lượng: \(AK=\dfrac{SA.AC}{\sqrt{SA^2+AC^2}}=\dfrac{a\sqrt{6}}{3}\)
\(\Rightarrow cos\widehat{CAK}=\dfrac{AK}{AC}=\dfrac{\sqrt{3}}{3}\)