K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2021

\(\left\{{}\begin{matrix}SA\perp BC\\AB\perp BC\end{matrix}\right.\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\)

\(\left\{{}\begin{matrix}BC\perp SB\\BC\perp AB\\\left(SAB\right)\cap\left(SBC\right)=BC\end{matrix}\right.\Rightarrow\left(\left(SAB\right),\left(SBC\right)\right)=\left(SB,AB\right)=\widehat{SBA}\)

\(SB=\sqrt{\left(a\sqrt{3}\right)^2+a^2}=2a\)

\(SC=\sqrt{SA^2+AC^2}=a\sqrt{5}\)

Vì SB^2+BC^2=SC^2

nên ΔSBC vuông tại B

(SBC;ABC)=(SB;BA)=góc SBA=60 độ

24 tháng 9 2018

ĐÁP ÁN: B

21 tháng 5 2021

Ta có: \(\left(SBC\right)\cap\left(ABC\right)=BC\)

Mà lại có: \(SA\perp BC\left(SA\perp\left(ABCD\right)\right);AB\perp BC\)

Do đó \(BC\perp\left(SAB\right)\)

Mặt khác \(\left(SAB\right)\cap\left(ABCD\right)=AB;\left(SAB\right)\perp\left(SBC\right)=SB\)

Vậy \(\left(\left(SBC\right),\left(ABC\right)\right)=\left(SB,AB\right)=\widehat{SBA}\)

11 tháng 4 2023

\(SA\perp\left(ABC\right)\left(gt\right)\)

\(\Rightarrow SA\perp AB;SA\perp BC\)

Mặt khác: \(AB\perp BC\Rightarrow BC\perp SB\)

Vậy góc giữa (SBC) Và đáy là góc: \(\widehat{SBA}=\alpha\)

Trong tam giác vuông \(SBA\) ta có: 

\(\tan\left(\alpha\right)=\dfrac{SA}{AB}=\dfrac{\sqrt{3}}{1}=\sqrt{3}\)

\(\Rightarrow\alpha=60^o\)

17 tháng 1 2018

Chọn C

Xác định được 

Khi đó ta tính được 

Trong mặt phẳng (ABC) lấy điểm D sao cho ABCD là hình chữ nhật => AB//(SCD) nên

Từ (1) và (2) suy ra 

Xét tam giác vuông SAD có

21 tháng 9 2018

Chọn D.

Gọi M là trung điểm của BC, suy ra AM ⊥ BC.

Ta có 

Do đó 

Tam giác ABC đều cạnh a, suy ra trung tuyến AM = a 3 2

Tam giác vuông SAM, có