K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 7 2021

Gọi D là hình chiếu vuông góc của S lên (ABC)

\(SD\perp\left(ABC\right)\Rightarrow SD\perp AB\) , mà \(AB\perp SA\left(gt\right)\Rightarrow AB\perp\left(SAD\right)\Rightarrow AB\perp AD\)

\(\Rightarrow AD||BC\)

Tương tự ta có: \(BC\perp\left(SCD\right)\Rightarrow BC\perp CD\Rightarrow CD||AB\)

\(\Rightarrow\) Tứ giác ABCD là hình vuông

\(\Rightarrow BD=a\sqrt{2}\)

\(SD=\sqrt{SB^2-BD^2}=a\sqrt{2}\)

Gọi P là trung điểm AD \(\Rightarrow MP\) là đường trung bình tam giác SAD

\(\Rightarrow\left\{{}\begin{matrix}MP=\dfrac{1}{2}SD=\dfrac{a\sqrt{2}}{2}\\MP||SD\Rightarrow MP\perp\left(ABC\right)\end{matrix}\right.\)

\(\Rightarrow\alpha=\widehat{MNP}\)

\(cos\alpha=\dfrac{NP}{MN}=\dfrac{NP}{\sqrt{NP^2+MP^2}}=\dfrac{a}{\sqrt{a^2+\dfrac{a^2}{2}}}=\dfrac{\sqrt{6}}{3}\)

22 tháng 2 2021

Ta có {BC⊥ABAB⊥SC⇒AB⊥CE{BC⊥ABAB⊥SC⇒AB⊥CE

Khi đó {CE⊥ABCE⊥SA⇒CE⊥(SAB){CE⊥ABCE⊥SA⇒CE⊥(SAB)

Áp dụng hệ thức lượng trong tam giác vuông ta có: SC2=SE.SB⇒SESB=SC2SB2SC2=SE.SB⇒SESB=SC2SB2, tương tự SDSE=SC2SA2SDSE=SC2SA2

Lại cả CA=AC√2=2a;VS.ABC=13SC.SABC=23a3CA=AC2=2a;VS.ABC=13SC.SABC=23a3

Khi đó VS.CDEVS.ABC=SESBSDSA=SC2SB2.SC2SA2=4648=13VS.CDEVS.ABC=SESBSDSA=SC2SB2.SC2SA2=4648=13

Do đó VS.CDE=13.23a3=2a39VS.CDE=13.23a3=2a39.

22 tháng 2 2021
Với OLM.VNHọc mà như chơi, chơi mà vẫn học
16 tháng 7 2019

9 tháng 3 2022

undefined

a: BC vuông góc SA

BC vuông góc AB

=>BC vuông góc (SAB)

=>(SAB) vuông góc (SBC)

b: BA vuông AD

BA vuông góc SA

=>BA vuông góc (SAD)

=>BA vuông góc SD

Lấy H là trung điểm của SD

=>HM//DC

=>HM vuông góc BC

ΔSAD vuông tại A nên AH vuông góc SD

=>SD vuông góc (BAH)

=>SD vuông góc (ABM)

=>(SCD) vuông góc (ABM)

11 tháng 5 2022

a. Ta có : \(BC\perp SA;BC\perp AB\Rightarrow BC\perp\left(SAB\right)\Rightarrow\left(SAB\right)\perp\left(SBC\right)\)

b.Dễ dàng c/m : \(AB\perp\left(SAD\right)\) \(\Rightarrow AB\perp SD\)

Lấy H là TĐ SD \(\Rightarrow MH\) // DC // AB 

\(\Delta SAD\) vuông cân tại A ; H là TĐ SD \(\Rightarrow AH\perp SD\)

Suy ra : \(SD\perp\left(ABH\right)\Rightarrow SD\perp\left(ABM\right)\Rightarrow\left(SCD\right)\perp\left(ABM\right)\left(đpcm\right)\)

7 tháng 7 2017

18 tháng 5 2021

undefined