K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 10 2020

Tứ diện (hay chóp tam giác) khi biết \(SA=x;SB=y;SC=z\) và các góc tương ứng ở đỉnh: \(\widehat{ASB}=a;\widehat{BSC}=b;\widehat{CSA}=c\) sẽ có thể tích được tính bởi:

\(V=\frac{xyz}{6}\sqrt{1+2cosa.cosb.cosc-cos^2a-cos^2b-cos^2c}\)

Cụ thể trong bài này thì:

\(V=\frac{a.2a.3a}{6}.\sqrt{1+2cos\left(60\right).cos\left(90\right).cos\left(120\right)-cos^250-cos^290-cos^2120}=...\)

23 tháng 3 2019

Đáp án D

23 tháng 12 2019

Chọn A

Trên cạnh SB, SC lần lượt lấy các điểm M, N thỏa mãn SM = SN = 1.

Ta có AM = 1, AN =  2 , MN = 3

=> tam giác AMN vuông tại A

Hình chóp S.AMN có SA = SM = SN = 1.

 => hình chiếu của S trên (AMN) là tâm I của đường tròn ngoại tiếp tam giác AMN, ta có I là trung điểm của MN

Trong  ∆ SIM,

Ta có  

31 tháng 3 2019

Chọn D.

Gọi là hình chiếu vuông góc của A lên mp (SBC) . Gọi I, K lần lượt là hình chiếu vuông góc của H lên SB và SC.

Ta có 

Chứng minh tương tự ta được SC ⊥ SK

∆ SAI =  ∆ SAK  (cạnh huyền – góc nhọn) => SI = SK

Khi đó  ∆ SHI = SHK  (cạnh huyền – cạnh góc vuông) => HI = HK. Do đó SH là đường phan giác trong của BSC, nên HSI = 30 °

Trong tam giác vuông SAI, 

Trong tam giác vuông HIS, 

Khi đó 

Vậy 

Cách 2: Sử dụng công thức tính nhanh

Nếu khối chóp S.ABC có  thì 

Áp dụng: Với 

Cách 3:

Trên các cạnh SB, SC lần lượt lấy các điểm B’, C’ sao cho SB' = SC' = SA = a 2

Khi đó chóp S.AB'C' là khối chóp tam giác đều. Đồng thời ASB = BSC = CSA = 60 °  nên AB' = B'C' = AC' = SA = a 2

Gọi H là hình chiếu của S lên mặt phẳng (AB'C'). Khi đó dễ dàng chứng minh được các tam giác SHA, SHB', SHC' bằng nhau. Suy ra HA, HB', HC' bằng nhau. Hay H là tâm đường tròn ngoại tiếp tam giác AB'C'. Vì tam giác AB'C' đều nên H cũng là trọng tâm tam giác AB'C'.

Ta có 

Ta có

12 tháng 3 2017

Chọn A

Gọi B' trên SB sao cho  S B ' = 2 3 S B  và C' trên SC sao cho S C ' = 2 3 S C

 

Khi đó SA=SB'=SC'=2 => S. AB'C' là khối tứ diện đều.

Cách khác:

18 tháng 11 2019

2 tháng 9 2017

Chọn B

Lấy  M ∈ S B ,   N   ∈ S C thỏa mãn SM=SN=SA=a ⇒ S M S B = 1 2 S N S C = 1 4

Theo giả thiết: A S B ^ = B S C ^ = C S A ^ = 60 o ⇒ S . A M N  là khối tứ diện đều cạnh a.

Do đó:  V S . A M N = a 3 2 12

Mặt khác:

  V S . A M N V S . A B C = S M S B . S N S C = 1 2 . 1 4 = 1 8 ⇒ V S . A B C = 8 V S . A M N = 2 a 3 2 3  

5 tháng 11 2019