K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 7 2021

Qua C kẻ đường thẳng vuông góc AC cắt AB kéo dài tại D

\(\left\{{}\begin{matrix}SC\perp\left(ABC\right)\Rightarrow SC\perp CD\\CD\perp AC\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAC\right)\)

Kẻ \(CH\perp SB\Rightarrow CH\perp\left(SAB\right)\)

\(\Rightarrow\widehat{HCD}\)  là góc giữa (SAB) và (SAC)

\(BC=\sqrt{AC^2-AB^2}=a\sqrt{2}\)

\(\dfrac{1}{CH^2}=\dfrac{1}{SC^2}+\dfrac{1}{BC^2}=\dfrac{13}{24a^2}\Rightarrow CH=\dfrac{2a\sqrt{78}}{13}\)

\(CD=AC.tanA=AC.\dfrac{BC}{AB}=a\sqrt{6}\)

\(sin\widehat{HCD}=\dfrac{DH}{CD}=\dfrac{\sqrt{CD^2-CH^2}}{CD}=...\)

25 tháng 7 2021

Giúp em vẽ hình được không ạ plss

3 tháng 7 2016

tính thể tích sao vậy

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

31 tháng 3 2017

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

10 tháng 7 2019

Chọn đáp án B

Gọi là H hình chiếu của đỉnh S xuống mặt phẳng (ABC). Khi đó, ta có

 

Ta có

Tương tự, ta cũng chứng minh được

Từ đó suy ra 

Do SH ⊥ AB, BH ⊥ AB nên suy ra góc giữa (SAB) (ABC) là góc SBH. Vậy SBH =  60 0

Trong tam giác vuông ABH, ta có

Trong tam giác vuông SHB, ta có

31 tháng 3 2017

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

23 tháng 5 2016

a. Ta có : \(\begin{cases}AB\perp BC\left(ABCDvuong\right)\\SA\perp BC\left(SA\perp\left(ABCD\right)\right)\end{cases}\)  \(\Rightarrow BC\perp\left(SAB\right)\) mà \(SB\subset\left(SAB\right)\) nên \(BC\perp SB\) Vậy \(\Delta SBC\left(\perp B\right)\)

tương tự ta có : \(\begin{cases}SA\perp DC\\AD\perp DC\end{cases}\) \(\Rightarrow DC\perp\left(SAD\right)\) mà \(SD\subset\left(SAD\right)\) nên \(SD\perp DC\) Vậy \(\Delta SDC\left(\perp D\right)\)

ta có \(SA\perp AD\) nên \(\Delta SAD\left(\perp A\right)\) 

Có \(SA\perp AB\) nên \(\Delta SAB\left(\perp A\right)\)

23 tháng 5 2016

b. Ta có : \(\begin{cases}AC\perp BD\\SA\perp BD\end{cases}\) \(\Rightarrow BD\perp\left(SAC\right)\) mà \(BD\subset\left(SBD\right)\) nên \(\left(SAC\right)\perp\left(SBD\right)\)