Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Kí hiệu như hình vẽ với D B ⊥ A B , D C ⊥ A C .
Ta có D B ⊥ S A D B ⊥ A B ⇒ D B ⊥ S B D ⇒ A M ⊥ S D .
Tương tự A N ⊥ S D ⇒ S D ⊥ A M N .
Mà S A ⊥ A B C ⇒ A B C ; A M N ^ = D S A ^ .
Ta có sin B A C ^ = B C 2 R = B C A D = 3 2 ⇒ A D = 2 B C 3 = S A 3 ⇒ tan D S A ^ = A D S A = 1 3 ⇒ D S A ^ = 30 ° .
Đáp án D
Gọi O là tâm đường tròn ngoại tiếp tam giác ABC.
Và D là điểm đối xứng với A qua O.
Đáp án D
Gọi O là tâm đường tròn ngoại tiếp Δ A B C , D là điểm đối xứng với A qua O.
⇒ O A = O B = O D suy ra tam giác ABD vuồn tại B ⇒ A B ⊥ B D .
Ta có A B ⊥ B D S A ⊥ B D ⇒ B D ⊥ S A B ⇒ B D ⊥ A M suy ra A M ⊥ S B D .
Suy ra A M ⊥ S D . Tương tự, ta chứng minh được A N ⊥ S D
Do đó S D ⊥ A M N . suy ra A B C ; A M N ^ = S A ; S D ^ = A S D ^
Tam giác SAD vuông tại A, có tan A S D ^ = A D S A
Mà đường kính A D = 2 x R Δ A B C = B C sin 120 ∘ = 3 2 x S A
Vậy tan A S D ^ = 3 3 ⇒ A S D ^ = 30 ∘ ⇒ A B C ; A M N ^ = 30 ∘
Đáp án C
Vì SA=SB=SC suy ra tam giác SAB và tam giác SAC cân tại S. Vậy B′,C′ lần lượt là trung điểm của AB,AC.
Ta có: