Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi H là trung điểm AC. Ta có tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC)
suy ra S H ⊥ A B C
Ta có
S B , A B C = S B H ^ = 45 o ⇒ S H = B H = 1 2 A C = a 2 2 V S . A B C = 1 3 . a 2 2 . 1 2 a 2 = a 3 2 12
Đáp án B
Gọi I là trung điểm BC; kẻ G H ⊥ A C = H
Xét ∆ A B C vuông cân tại C ta có:
Kẻ G K ⊥ S H = K ⇒ G K ⊥ m p ( S A C )
Xét ∆ S G H vuông tại G có:
⇒ G K = a 3 3
⇒ d ( B , m p ( S A C ) ) = 3 G K = a 3 ( đ v đ d )
Hạ \(SH\perp BC\Rightarrow\left(SBC\right)\perp\left(ABC\right)\)
\(\Rightarrow SH\perp BC;SH=SB.\sin\widehat{SBC}=a\sqrt{3}\)
Diện tích : \(S_{ABC}=\frac{12}{\boxtimes}BA.BC=6a^2\)
Thể tích : \(V_{s.ABC}=\frac{1}{3}S_{ABC}.SH=2a^3\sqrt{3}\)
Hạ \(HD\perp AC\left(D\in AC\right),HK\perp SD\left(K\in SD\right)\)
\(\Rightarrow HK\perp\left(SAC\right)\Rightarrow HK=d\left(H,\left(SAC\right)\right)\)
\(BH=SB.\cos\widehat{SBC}=3a\Rightarrow BC=4HC\)
\(\Rightarrow d\left(B,\left(SAC\right)\right)=4d\left(H,SAC\right)\)
Ta có : \(AC=\sqrt{BA^2+BC^2}=5a;HC=BC-BH=a\)
\(\Rightarrow HD=BA.\frac{HC}{AC}=\frac{3a}{5}\)
\(HK=\frac{SH.HS}{\sqrt{SH^2+HD^2}}=\frac{3a\sqrt{7}}{14}\)
Vậy \(d\left(B,\left(SAC\right)\right)=4HK=\frac{6a\sqrt{7}}{7}\)
Đáp án A
Gọi M là trung điểm của AC thì góc của (SAC) và (BAC) bằng S M B ^ = 60 °
Ta có: tam giác ABC vuông cân tại B nên
B M = 1 2 A C = a 2 2 ⇒ S A B C = 1 2 B M . A C = 1 2 . a 2 2 . a 2 = a 2 2
Mặt khác, S B = B M . tan 60 ° = a 6 2
Vậy V = 1 3 . a 2 2 . a 6 2 = a 3 6 12
Vì tam giác ABC vuông cân tại C, \(AB=3a\Rightarrow CA=CB=\frac{3a}{\sqrt{2}}\)
Gọi M là trung điểm \(AC\Rightarrow MC=\frac{3a}{2\sqrt{2}}\Rightarrow MB=\frac{3a\sqrt{5}}{2\sqrt{2}}\)
\(\Rightarrow BG=\frac{2}{3}BM=\frac{a\sqrt{5}}{\sqrt{2}}\Rightarrow SG=\sqrt{SB^2-BG^2}=a\)
\(\Rightarrow V_{S.ABC}=\frac{1}{3}SG.S_{\Delta ABC}=\frac{3a^2}{4}=\frac{3a^2}{4}\)
Kẻ \(GI\perp AC\left(I\in AC\right)\Rightarrow AC\perp\left(SGI\right)\)
Ta có : \(GI=\frac{1}{3}BC=\frac{a}{\sqrt{2}}\)
Kẻ \(GH\perp SI\left(H\in SI\right)\Rightarrow GH\perp\left(SAC\right)\Rightarrow d\left(G,\left(SAC\right)\right)=GH\)
Ta có \(\frac{1}{GH^2}=\frac{1}{GS^2}+\frac{1}{GI^2}\Rightarrow GH=\frac{a}{\sqrt{3}}\Rightarrow3d\left(B,\left(SAC\right)\right)=3GH=a\sqrt{3}\)
C