Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có tam giác HBM đồng dạng với tam giác CBA nên
Xét tam giác vuông SHC có
Đáp án là B
Gọi K là trung điểm AB
• H K ⊥ A B S H ⊥ A B ⇒ A B ⊥ ( S H K )
• H M ⊥ S K H M ⊥ A B ⇒ H M ⊥ ( S A B ) ⇒ d [ H ; ( S A B ) ] = H M
• H K = B C 2 = a 3 2 ; H B = A C 2 = a ;
• S H = S B − 2 H B 2 = a ; 1 H M 2 = 1 S H 2 + 1 H K 2 = 1 a 2 + 1 3 a 2 4 = 1 a 2 + 4 3 a 2 = 7 3 a 2
⇒ H M = a 21 7 ⇒ d [ H ; ( S A B ) ] = a 21 7 .
Đáp án A
Gọi I, H lần lượt là hình chiếu của A lên BC và SI
Ta có: 1 A I 2 = 1 A B 2 + 1 A C 2 = 1 2 a 2 + 1 3 a 2 = 13 36 a 2
1 A H 2 = 1 S A 2 + 1 A I 2 = 1 4 a 2 + 1 36 a 2 = 61 144 a 2
⇒ A I = 12 a 61 ⇒ d = A I = 12 a 61
Đáp án B.
Vẽ đường thẳng d qua B và song song với AC.
Gọi K, I lần lượt là hình chiếu của H trên d và SB, L là hình chiếu của H trên SK.
d ( D , ( S B C ) ) = 2 a 3 ⇔ d A ; ( A B C ) = 2 a 3 ⇔ d H , S B C = a 3 ⇔ H I = a 3
1 S H 2 = 1 H I 2 - 1 H B 2 ⇒ S H = a 5 5
sin K B H ⏞ = H K H B = sin C A B ⏞ = C B A C ⇒ H K = H B . C B A C = a 5 5
d A C ; S B = d A , S B K = 2 d H , S B K = 2 H L = 2 . S H . H K S H 2 + H K 2 = a 10 5
Đáp án C
B C = A B . tan 30 0 = a 3 3 ⇒ A C = a 2 3 + a 2 = 2 3 3 a V = 1 3 . S A . 1 2 . A B . B C = 1 3 . S A . 1 2 . a . a 3 3 = a 3 3 36 ⇒ S A = a 2 S B = a 2 4 + a 2 = a 5 2 V = 1 3 . d ( A ; S B C ) . 1 2 . S B . B C = 1 3 . d . 1 2 . a 5 2 . a 3 3 = a 3 3 36 ⇒ d = a 5 5
Đáp án B
Tam giác ABC vuông cân tại ⇒ A B = B C = 2 a .
Tam giác SHB vuông tại H, có S H = S B 2 − H B 2 = 2 a 2 .
Kẻ H K ⊥ S B K ∈ S B mà B C ⊥ S A B ⇒ H K ⊥ S B C
Suy ra: 1 H K 2 = 1 S H 2 + 1 B H 2 = 1 2 a 2 2 + 1 a 2 = 9 8 a 2
⇒ H K = 2 a 2 3
Vậy khoảng cách từ H → m p S B C là d = 2 a 2 3 .