Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Gọi N, Q lần lượt là trung điểm của AB, CD ⇒ M N ⊥ A B M Q ⊥ A B .
Qua N kẻ đường thẳng song song với BC, cắt SC tại P.
Suy ra thiết diện của mặt phẳng α và hình chóp là MNPQ.
Vì MQ là đường trung bình của hình tháng ABCD ⇒ M Q = 3 a 2 .
MN là đường trung bình của tam giác SAB ⇒ M N = S A 2 = a .
NP là đường trung bình của tam giác SBC ⇒ N P = B C 2 = a 2 .
Vậy diện tích hình thang MNPQ là S M N P Q = M N . N P + M Q 2 = a 2 a 2 + 3 a 2 = a 2 .
Ta có:
S B = a 2 + b 2 = a 2 A C 2 = a 2 + 3 a 2 = 4 a 2 ⇒ S C = a 2 + 4 a 2 = a 5 S K = S A 2 S B = a 2 a 2 = a 2 S H = S A 2 S C = a 2 a 5 = a 5 V S . A H K V S . A B C = S K . S H S B . S C = 1 2 . 1 5 = 1 10 ⇒ V S . A H K = 1 10 V S . A B C = 1 60 S A . B A . B C = 1 60 3 a 3
Đáp án cần chọn là C