K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

Đáp án B

HDG:

Dễ dàng chứng minh ∆ S B C  vuông tại B

Ta có (SAB)  ⊥ (SBC) theo giao tuyến SB. Kẻ

13 tháng 5 2019

Chọn C.

 

Gọi H là trung điểm của BC, suy ra .

Gọi K là trung điểm AC

NV
23 tháng 1 2021

Tam giác SBC cân hay đều em nhỉ?

Vì tam giác SBC đều thì sẽ không khớp với dữ kiện \(V_{SABC}=\dfrac{a^3}{16}\)

23 tháng 1 2021

Đề cho là tam giác đều ạ

26 tháng 7 2017

Chọn đáp án D

+ Gọi  H là trung điểm SB. Do tam giác SAB vuông tại A, SBC vuông tại C suy ta HA = HB = HS = HC

Suy ra H là tâm mặt cầu.

+ Gọi I là hình chiếu của H lên (ABC). Do HA = HB = HC , suy ra IA = IB = IC 

Suy ra I là trung điểm AC. Gọi P là trung điểm BC, do tam giác ABC vuông cân, suy ra

Áp dụng hệ thức

\

12 tháng 2 2018

Đáp án C

Dựng  

Dựng

=> d(B;(SAC))

6 tháng 1 2017

Đáp án A

Gọi I,H lần lượt là hình chiếu vuông góc của A trên BC, SI, khi đó: d(A, (SBC)) =AH

Tam giác ABC đều cạnh a nên AI =  a 3 2

Khi đó xét tam giác SAI :

18 tháng 6 2017

Đáp án C

6 tháng 6 2017