Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Hướng dẫn giải: Gọi H là trung điểm AC.
Do tam giác ABC vuông tại B nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Đỉnh S cách đều các điểm A, B,C nên hình chiếu của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC
suy ra S H ⊥ ( A B C )
Tam giác vuông SBH, có
Tam giác vuông ABC ,
có A B = A C 2 - B C 2 = a 3
Diện tích tam giác vuông
S ∆ A B C = 1 2 B A . B C = a 3 2 2
Vậy V S . A B C = 1 3 S ∆ A B C . S H = a 3 2
Chọn A
Cách 1:
Dễ thấy hai tam giác SAB và SAC bằng nhau (cạnh chung SA), gọi K là chân đường cao hạ từ A trong tam giác SAB
Từ giả thiết tam giác ABC vuông cân tại B ta được
Trong tam giác ICK vuông tại I có .
Như vậy Ik > IB (vô lý).
TH2: tương tự phần trên ta có
Do nên tam giác BIK vuông tại K và
Như vậy tam giác BKI đồng dạng với tam giác BHS suy ra:
Vậy thể tích của khối chóp S.ABC là
Cách 2: dùng phương pháp tọa độ hóa.
Đáp án D
Trong tam giác SAC, kẻ SH vuông góc AC tại H. Lúc đó S H = S A sin S A C ^ = a 3
Vì
S
A
C
∩
A
B
C
=
B
C
,
S
H
⊂
S
A
C
,
S
H
⊥
B
C
nên .
S
H
⊥
A
B
C
Trong tam giác ABC ta có AC=4a và
S
A
B
C
=
1
2
A
B
.
A
C
=
6
a
2
Vậy V S A B C = 1 3 S H . S A B C = 2 a 3 3 .
Đáp án C
Gọi H là trung điểm AC. Ta có tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC)
suy ra S H ⊥ A B C
Ta có
S B , A B C = S B H ^ = 45 o ⇒ S H = B H = 1 2 A C = a 2 2 V S . A B C = 1 3 . a 2 2 . 1 2 a 2 = a 3 2 12
Đáp án là B
Gọi H, K, M lần lượt là trung điểm của AC, BC, SB và vì tam giác ABC vuông tại B suy ra HK ⊥ BC (1)
Gọi E là hình chiếu của H trên mặt phẳng (SBC) => HE ⊥ BC(2).
Từ (1), (2) suy ra EK ⊥ BC => EK ≡ MK( vì MK ⊥ BC) do đó
Lại có HA = HB = HC, MA = MB = MC ( do M là tâm mặt cầu ngoại tiếp S.ABC) suy ra MH là trục của đường tròn ngoại tiếp tam giác ABC suy ra ∆ MHK vuông tại H => MH = tan30 ° . H K = a 3 .
Vậy thể tích khối chóp