K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 5

Gọi độ dài \(AB=AC=x\)

Gọi D là trung điểm BC \(\Rightarrow AD\perp BC\)

\(AD=\dfrac{BC}{2}=\dfrac{x\sqrt{2}}{2}\)

Từ A kẻ \(AH\perp SD\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH=d\left(A;\left(SBC\right)\right)\)

\(AH=\dfrac{SA.AD}{\sqrt{SA^2+AD^2}}=\dfrac{a.\dfrac{x\sqrt{2}}{2}}{\sqrt{a^2+\dfrac{x^2}{2}}}=\dfrac{a\sqrt{21}}{7}\)

\(\Rightarrow\dfrac{1}{2}x^2=\dfrac{3}{7}\left(a^2+\dfrac{x^2}{2}\right)\Rightarrow x^2=\dfrac{3a^2}{2}\)

\(V=\dfrac{1}{3}SA.\dfrac{1}{2}x^2=\dfrac{a^2}{4}=\dfrac{3}{4}\)

27 tháng 9 2019

Đáp án B

HDG:

Dễ dàng chứng minh ∆ S B C  vuông tại B

Ta có (SAB)  ⊥ (SBC) theo giao tuyến SB. Kẻ

NV
23 tháng 1 2021

Tam giác SBC cân hay đều em nhỉ?

Vì tam giác SBC đều thì sẽ không khớp với dữ kiện \(V_{SABC}=\dfrac{a^3}{16}\)

23 tháng 1 2021

Đề cho là tam giác đều ạ

14 tháng 5 2022

undefined

14 tháng 5 2022

undefined

31 tháng 5 2018

Đáp án B.

7 tháng 11 2019

Đáp án C

22 tháng 6 2017

ĐÁP ÁN: D

26 tháng 7 2017

Chọn đáp án D

+ Gọi  H là trung điểm SB. Do tam giác SAB vuông tại A, SBC vuông tại C suy ta HA = HB = HS = HC

Suy ra H là tâm mặt cầu.

+ Gọi I là hình chiếu của H lên (ABC). Do HA = HB = HC , suy ra IA = IB = IC 

Suy ra I là trung điểm AC. Gọi P là trung điểm BC, do tam giác ABC vuông cân, suy ra

Áp dụng hệ thức

\

4 tháng 4 2017

Đáp án D

22 tháng 4 2017

Đáp án B

Ta có BC ⊥ ACBC ⊥ SC, do đó góc giữa mp (SBC) và mp (ABC) chính là góc SCA.

Mặt khác

Vì tam giác SAC vuông tại A nên ta có

đặt t = sin α  ta có hàm số thể tích theo t như sau

22 tháng 11 2018

ĐÁP ÁN: A