Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2018

Đáp án B

Gọi I là hình chiếu của điểm S trên mặt phẳng (ABC). Do S A = S B = S C  nên   I A = I B = I C ⇒ I  là tâm đường tròn ngoại tiếp  Δ A B C . Mà Δ A B C  vuông cân tại A nên I là trung điểm của BC và I A = I B = I C = 1 2 B C = a 2 2 .

Ta có IA là hình chiếu của SA trên mặt phẳng (ABC) nên S A , A B C ^ = S A , I A ^ = S A I ^ = 45 0 .

Do Δ S I A  vuông tại I nên Δ S A I  vuông cân tại I, khi đó :  S I = I A = a 2 2 ⇒ d S ; A B C = S I = a 2 2

3 tháng 6 2017

Đáp án B

Hình chiếu của S xuống đáy ABC là tâm của đáy tức là M với M là trung điểm của .

Ta có  S A , A B C ^ = S A , A M ^ = S A M = 45 0

Vì ABC là tam giác vuông cân nên H cũng là trung điểm của BC vì thế 

A M = 1 2 B C = a 2 2

ta có 

d S ; A B C = S M = A M . tan S A M = a 2 2 . tan 45 0 = a 2 2

2 tháng 8 2017

Gọi H là trung điểm của AC

Đỉnh S cách đều các điểm A, B, C 

Xác đinh được 

Ta có MH//SA 

Gọi I là trung điểm của AB 

 và chứng minh được 

Trong tam giác vuông SHI tính được 

Chọn A.

18 tháng 5 2019

14 tháng 5 2018

Đáp án A.

24 tháng 1 2017

Đáp án A.

Ta có   S C H ^ = 60 ° và

H C = a 7 3 ; S H = H C tan S C H ^ = a 21 3

Từ A kẻ tia A x / / C B  (như hình vẽ). Khi đó B C / / S A x  và do B A = 3 2 H A  nên

d B C , S A = d B C , S A x = d B , S A x = 3 2 d H , S A x

Gọi N và K lần lượt là hình chiếu vuông góc của H trên Ax và SN.

Do A N ⊥ S H N  và H K ⊥ S N  nên H K ⊥ S A N . Khi đó d B C , S A = 3 2 H K .

Ta có

A H = 2 a 3 ; H N = A H sin N A H ^ = a 3 3 .

Suy ra H K = H N . H S H N 2 + H S 2 = a 42 12 . Vậy d B C , S A = a 42 8 .

5 tháng 7 2017

Vì AB, AC, AS đôi một vuông góc nên

Chọn C.

4 tháng 10 2018

Đáp án C

19 tháng 10 2019

Chọn đáp án A

Gọi D là hình chiếu của điểm S lên (ABC)

6 tháng 9 2019

Đáp án là C