K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

Chọn D.

Gọi M là trung điểm của BC, suy ra AM ⊥ BC.

Ta có 

Do đó 

Tam giác ABC đều cạnh a, suy ra trung tuyến AM = a 3 2

Tam giác vuông SAM, có 

4 tháng 7 2017

+ Gọi H là trung điểm của BC

Do tam giác ABC cân tại A nên AH ⊥ BC, tam giác SBC đều nên SH  ⊥ BC

Mà (SBC)  ⊥ (ABC)

Do đó SH  ⊥ (ABC)

+ Gọi K là hình chiếu vuông góc của H lên SA ⇒  HK ⊥ SA

Ta có  B C ⊥ S H B C ⊥ A H ⇒ B C ⊥ S A H ⇒ B C ⊥ H K

Vậy HK là đoạn vuông góc chung của BC và SA, do đó khoảng cách giữa BC và SA là HK.

+ Tính HK

Tam giác SBC đều cạnh a ⇒  SH =  a 3 2

Tam giác ABC vuông cân tại A ⇒  AH =  B C 2 = a 2

Tam giác SHA vuông tại H có HK là đường cao ⇒ 1 H K 2 = 1 S H 2 + 1 A H 2  

HK =  a 3 4

Vậy d(SA; BC) = a 3 4 .

Đáp án C

22 tháng 11 2018

ĐÁP ÁN: A

4 tháng 10 2019

Chọn A

Gọi M là trung điểm BC

Gọi K là hình chiếu của A trên SM , suy ra AK ⊥ SM.   (1)

22 tháng 4 2017

Đáp án B

Ta có BC ⊥ ACBC ⊥ SC, do đó góc giữa mp (SBC) và mp (ABC) chính là góc SCA.

Mặt khác

Vì tam giác SAC vuông tại A nên ta có

đặt t = sin α  ta có hàm số thể tích theo t như sau

24 tháng 7 2019

Đáp án D.

Gọi H là trung điểm của BC 

∆ SBC đều cạnh bằng a nên

22 tháng 2 2017