K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NV
Nguyễn Việt Lâm
Giáo viên
26 tháng 6 2020
\(\Delta ABC\) đều \(\Rightarrow AM\perp BC\) (1)
Mà \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\) (2)
(1);(2) \(\Rightarrow BC\perp\left(SAM\right)\)
b/ \(BC\perp\left(SAM\right)\) mà BC là giao tuyến của (SBC) và (ABC)
\(\Rightarrow\widehat{SMA}\) là góc giữa (SBC) và (ABC)
\(AM=\frac{AB\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\Rightarrow tan\widehat{SMA}=\frac{SA}{AM}=2\)
\(\Rightarrow\widehat{SMA}\approx63^026'\)
c/ Từ A kẻ \(AH\perp SM\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH=d\left(A;\left(SBC\right)\right)\)
\(\frac{1}{AH^2}=\frac{1}{AM^2}+\frac{1}{SA^2}\Rightarrow AH=\frac{AM.SA}{\sqrt{AM^2+SA^2}}=\frac{a\sqrt{15}}{5}\)
tam giác ABC đều nên AM ⊥ BC ⇒ SM ⊥ BC (theo định lí ba đường vuông góc)
Đáp án B