K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

Đáp án D

31 tháng 8 2018

Đáp án A.

Hướng dẫn giải:

Vì S H ⊥ ( A B C ) nên hình chiếu vuông góc của SA trên mặt đáy (ABC) là HA. Do đó

Tam giác ABC đều cạnh a nên A H = a 3 2 .

Tam giác vuông SHA

Diện tích tam giác đều ABC là S ∆ A B C = a 3 3 4 .

Vậy  V S . A B C D = 1 3 S ∆ A B C . S H = a 3 3 8

25 tháng 2 2018

Đáp án A

3 tháng 6 2018

Đáp án B

28 tháng 11 2017

31 tháng 3 2016

x s K A N B H D C

Ta có : \(\widehat{SCH}\) là góc giữa SC và mặt phẳng (ABC). 

\(\Rightarrow\widehat{SCH}=60^0\)

Gọi D là trung điểm cạnh AB. Ta có :

\(HD=\frac{a}{6}\), CD= \(\frac{a\sqrt{3}}{2}\)

\(HC=\sqrt{HD^2+CD^2}=\frac{a\sqrt{7}}{3}\)

\(SH=HC.\tan60^0=\frac{a\sqrt{21}}{3}\)

\(V_{s.ABC}=\frac{1}{3}.SH.S_{\Delta ABC}=\frac{1}{3}.\frac{a\sqrt{21}}{3}.\frac{a^2\sqrt{3}}{4}=\frac{a^3\sqrt{7}}{12}\)

Kẻ Ax song song với BC, gọi N, K lần lượt là hình chiếu vuông góc của H lên Ax và SN. Ta có BC song song với mặt phẳng (SAN) và \(BA=\frac{3}{2}HA\)

Nên \(d\left(SA.BC\right)=d\left(B,\left(SAN\right)\right)=\frac{3}{2}d\left(H.\left(SAN\right)\right)\)

\(AH=\frac{2a}{3}\)\(HN=AH.\sin60^0=\frac{a\sqrt{3}}{3}\)

\(HK=\frac{SH.HN}{\sqrt{SH^2+HN^2}}=\frac{a\sqrt{42}}{12}\)

Vậy \(d\left(SA.BC\right)=\frac{a\sqrt{42}}{8}\)

30 tháng 3 2016

Góc 60 là góc SCH. Dễ dàng tính được V
Trong (ABC), kẻ At // BC, Cz//AB, giao At=N
d(sa,bc)=d(bc, (SAN))=d(B, (SAN))=3/2 d(H, (SAN)).
Từ H kẻ HE vuông AN
 Trong (SHE) kẻ HF vuông SE
=> d(H(SAN))=HF

29 tháng 8 2018

Đáp án B

28 tháng 3 2016
thi tuyen sinh, tuyen sinh, thi dai hoc, dai hoc, huong nghiep, luyen thi dai hoc, thi thu, de thi thu, thi thu dai hoc, thong tin tuyen sinh, tuyển sinh, thi thử đại học, đề thi thử, thi tuyển sinh, thi đại học, gia su, gia sư, đại học, hướng nghiệp, luyên thi đại học, thi thử, thông tin tuyển sinh 

1) Gọi H là trung điểm của AB.
ΔSAB đều → SH  AB
mà (SAB)  (ABCD) → SH (ABCD)
Vậy H là chân đường cao của khối chóp.