Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm của AC
Đỉnh S cách đều các điểm A, B, C
Xác đinh được
Ta có MH//SA
Gọi I là trung điểm của AB
và chứng minh được
Trong tam giác vuông SHI tính được
Chọn A.
Đáp án B
Gọi I là hình chiếu của điểm S trên mặt phẳng (ABC). Do S A = S B = S C nên I A = I B = I C ⇒ I là tâm đường tròn ngoại tiếp Δ A B C . Mà Δ A B C vuông cân tại A nên I là trung điểm của BC và I A = I B = I C = 1 2 B C = a 2 2 .
Ta có IA là hình chiếu của SA trên mặt phẳng (ABC) nên S A , A B C ^ = S A , I A ^ = S A I ^ = 45 0 .
Do Δ S I A vuông tại I nên Δ S A I vuông cân tại I, khi đó : S I = I A = a 2 2 ⇒ d S ; A B C = S I = a 2 2
Đáp án B
Hình chiếu của S xuống đáy ABC là tâm của đáy tức là M với M là trung điểm của .
Ta có S A , A B C ^ = S A , A M ^ = S A M = 45 0
Vì ABC là tam giác vuông cân nên H cũng là trung điểm của BC vì thế
A M = 1 2 B C = a 2 2
ta có
d S ; A B C = S M = A M . tan S A M = a 2 2 . tan 45 0 = a 2 2
Đáp án A
Gọi M là trung điểm của AC. Tam giác ABC vuông tại B, do đó M là tâm đường tròn ngoại tiếp tam giác ABC.
Gọi O là trung điểm của AC, suy ra OM // SA. Mà
Chọn B
ta có: d ( I , ( S A B ) ) = 1 2 d ( C , ( S A B ) )
lại có: d ( C , ( S A B ) ) = 3 V S A B C S Δ A B C
gọi M là trung điểm AB, khi đó góc giữa mp(SAB) và mp(ABC) là góc S M H ^
khi đó: S H = H M . tan 60 o = a 3 2
V S A B C = a 3 3 12 ; S A B C = a 2 2 ⇒ d ( C , ( S A B ) ) = a 3 2 ⇒ d ( I , ( S A B ) ) = a 3 4
Đáp án A.
Ta có S C H ^ = 60 ° và
H C = a 7 3 ; S H = H C tan S C H ^ = a 21 3
Từ A kẻ tia A x / / C B (như hình vẽ). Khi đó B C / / S A x và do B A = 3 2 H A nên
d B C , S A = d B C , S A x = d B , S A x = 3 2 d H , S A x
Gọi N và K lần lượt là hình chiếu vuông góc của H trên Ax và SN.
Do A N ⊥ S H N và H K ⊥ S N nên H K ⊥ S A N . Khi đó d B C , S A = 3 2 H K .
Ta có
A H = 2 a 3 ; H N = A H sin N A H ^ = a 3 3 .
Suy ra H K = H N . H S H N 2 + H S 2 = a 42 12 . Vậy d B C , S A = a 42 8 .
Đáp án A
Ta có tam giác SAB cân tại A,I là trung điểm A B ⇒ S I ⊥ A B
Lại có S A B ⊥ A B C ⇒ S I ⊥ A B C ⇒ Góc giữa đường thẳng và mặt phẳng (ABC) là: S C I ⏜ .