Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\dfrac{V_{SAMC}}{V_{SABC}}=\dfrac{SM}{SB}\)
Theo hệ thức lượng: \(SA^2=SM.SB\Rightarrow SM=\dfrac{SA^2}{SB}\)
\(\Rightarrow\dfrac{SM}{SB}=\left(\dfrac{SA}{SB}\right)^2\)
\(\Rightarrow V_{SAMC}=\left(\dfrac{SA}{SB}\right)^2.V\)
2.
Ta có: \(\dfrac{V_{SAMN}}{V_{SABC}}=\dfrac{SN}{SC}.\dfrac{SM}{SB}\)
Theo c/m câu a ta có \(\dfrac{SM}{SB}=\left(\dfrac{SA}{SB}\right)^2\)
Tương tự áp dụng hệ thức lượng cho tam giác vuông SAC:
\(SA^2=SN.SC\Rightarrow SN=\dfrac{SA^2}{SC}\Rightarrow\dfrac{SN}{SC}=\left(\dfrac{SA}{SC}\right)^2\)
\(\Rightarrow V_{SAMN}=\left(\dfrac{SA}{SB}\right)^2.\left(\dfrac{SA}{SC}\right)^2.V\)
a) Vì I là trọng tâm của tam giác ABD nên \(AI=\dfrac{1}{3}AC\)
S B M H A E N C D
Gọi H là hình chiếu vuông góc của S lên AB, suy ra \(SH\perp\left(ABCD\right)\)
Do đó, SH là đường cao của hình chóp S.BMDN
Ta có : \(SA^2+SB^2=a^2+3a^2=AB^2\)
Nên tam giác SAB là tam giác vuông tại S.
Suy ra : \(SM=\frac{AB}{2}=a\) Do đó tam giác SAM là tam giác đều, suy ra \(SH=\frac{a\sqrt{3}}{3}\)
Diện tích của tứ giác BMDN là \(S_{BMDN}=\frac{1}{2}S_{ABCD}=2a^2\)
Thể tích của khối chóp S.BMDN là \(V=\frac{1}{3}SH.S_{BMDN}=\frac{a^3\sqrt{3}}{3}\)
Kẻ ME song song với DN (E thuộc AD)
Suy ra : \(AE=\frac{a}{2}\) Đặt \(\alpha\) là góc giữa 2 đường thẳng SM và DN
Ta có \(\left(\widehat{SM,ME}\right)=\alpha\), theo định lý 3 đường vuông góc ta có \(SA\perp AE\)
Suy ra :
\(SE=\sqrt{SA^2+AE^2}=\frac{a\sqrt{5}}{2};ME=\sqrt{AM^2+AE^2}=\frac{a\sqrt{5}}{2}\)
Tam giác SME là tam giác cân tại E nên \(\begin{cases}\widehat{SME}=\alpha\\\cos\alpha=\frac{\frac{a}{2}}{\frac{a\sqrt{5}}{2}}=\frac{\sqrt{5}}{5}\end{cases}\)
Cho mình hỏi, tam giác cân thì tại sao lại suy ra cos góc kia như thế ??
Chọn B