Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có: AB vuông góc với BC, SC vuông góc với BC (vì SC vuông góc với mặt đáy ABCD). Vậy AB // SC. Vậy AB vuông góc (SBC).
b/ Tương tự, ta có: AD vuông góc với CD, SC vuông góc với CD. Vậy AD // SC. Vậy AD vuông góc (SCD).
c/ Ta có: SA vuông góc với mặt đáy ABCD (vì S là đỉnh chóp), CI vuông góc với SB (vì đường thẳng CI là hình chiếu của đường thẳng SC lên mặt phẳng chứa SB và CI). Vậy SA // CI. Vậy SA vuông góc CI.
d/ Gọi M là trung điểm của IJ. Ta cần chứng minh SA vuông góc CM. Ta có: CM vuông góc với IJ (vì nằm trên đường trung trực của IJ). Ta cũng có: SA vuông góc CI (đã chứng minh ở câu c). Vậy ta cần chứng minh CI // JM. Từ đó suy ra (SAC) ⊥ (CIJ). Theo tính chất của hình học không gian, ta có CI vuông góc với mặt phẳng (SBC). Tương tự, JI vuông góc với mặt phẳng (SCD). Vậy CI // JI. Điều này suy ra từ tính chất của mặt phẳng và đoạn thẳng vuông góc với mặt phẳng. Suốt đoạn thẳng IJ, ta có thể lấy một điểm nào đó làm trung điểm, ví dụ M. Vậy CI // JM.
a: BC\(\perp\)BA(ABCD là hình vuông)
BC\(\perp\)SA(SA\(\perp\)(ABCD))
BA,SA cùng thuộc mp(SAB)
Do đó: BC\(\perp\)(SAB)
=>BC\(\perp\)SB
=>ΔSBC vuông tại B
Ta có: CD\(\perp\)AD(ABCD là hình vuông)
CD\(\perp\)SA(SA\(\perp\)(ABCD))
SA,AD cùng thuộc mp(SAD)
Do đó: CD\(\perp\)(SAD)
=>CD\(\perp\)SD
=>ΔSDC vuông tại D
b: Ta có: AH\(\perp\)SB
AH\(\perp\)BC(BC\(\perp\)(SAB))
SB,BC cùng thuộc mp(SBC)
Do đó: AH\(\perp\)(SBC)
=>AH\(\perp\)SC
CD\(\perp\)(SAD)
AI\(\subset\)(SAD)
Do đó: CD\(\perp\)AI
mà AI\(\perp\)SD
và SD,CD cùng thuộc mp(CSD)
nên AI\(\perp\)(SCD)
=>AI\(\perp\)SC
Ta có: AI\(\perp\)SC
AK\(\perp\)SC
AH\(\perp\)SC
=>AI,AK,AH đồng phẳng
c: Xét ΔSAB vuông tại A và ΔSAD vuông tại A có
SA chung
AB=AD
Do đó: ΔSAB=ΔSAD
=>\(\widehat{BSA}=\widehat{DSA}\); SB=SD
Xét ΔSHA vuông tại H và ΔSIA vuông tại I có
SA chung
\(\widehat{HSA}=\widehat{ISA}\)
Do đó: ΔSHA=ΔSIA
=>SH=SI
Xét ΔSBD có \(\dfrac{SH}{SB}=\dfrac{SI}{SD}\)
nên HI//BD
BD\(\perp\)AC(ABCD là hình vuông)
BD\(\perp\)SA(SA\(\perp\)(ABCD))
AC,SA cùng thuộc mp(SAC)
Do đó:BD\(\perp\)(SAC)
mà HI//BD
nên HI\(\perp\)(SAC)
mà AK\(\subset\)(SAC)
nên HI\(\perp\)AK
1: BC vuông góc AB
BC vuông góc SA
=>BC vuông góc (SAB)
=>(SAB) vuông góc (SBC)
Do O là giao điểm 2 đường chéo \(\Rightarrow\) O là trung điểm AC và BD
Tam giác SAC cân tại S \(\Rightarrow SO\) là trung tuyến đồng thời là đường cao
\(\Rightarrow SO\perp AC\) (1)
Tương tự ta có \(SO\perp BD\) (2)
(1); (2) \(\Rightarrow SO\perp\left(ABCD\right)\)
b. Ta có \(AC\perp BD\) nên tam giác OBC vuông tại O
\(\Rightarrow OE=BE=\dfrac{1}{2}BC\) (trung tuyến ứng với cạnh huyền)
Mà \(\widehat{BCD}=\widehat{BAD}=60^0\Rightarrow\Delta BCD\) đều
\(\Rightarrow BD=BC\Rightarrow OB=BE=\dfrac{1}{2}BC\Rightarrow OB=OE=BE\)
\(\Rightarrow\Delta OBE\) đều \(\Rightarrow OF\perp BC\) (trung tuyến tam giác đều đồng thời là đường cao)
Mà \(SO\perp\left(ABCD\right)\Rightarrow SO\perp BC\)
\(\Rightarrow BC\perp\left(SOF\right)\Rightarrow\left(SBC\right)\perp\left(SOF\right)\)
a) Tam giác ABD có AB = AD ( do ABCD là hình thoi)
=> Tam giác ABD cân tại A. Lại có góc A= 60o
=> Tam giác ABD đều.
Lại có; SA = SB = SD nên hình chóp S.ABD là hình chóp đều.
* Gọi H là tâm của tam giác ABD
=>SH ⊥ (ABD)
*Gọi O là giao điểm của AC và BD.
a: AB vuông góc SC
AB vuông góc BC
=>AB vuông góc (SBC)
b: AD vuông góc CD
AD vuông góc SC
=>AD vuông góc (SCD)