Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Gọi O là giao điểm của hai đường chéo AC và BD thì SO ∩ DD' = H. Khi đó H là trung điểm của SO và C' = AH ∩ SO.
Trong mặt phẳng (SAC) : Ta kẻ d // AC và AC' cắt (d) tại K. Khi đó áp dụng tính đồng dạng của các tam giác ta có:
Suy ra:
Lưu ý: Có thể sử dụng nhanh công thức:
Chọn C
Gọi O là tâm của hình vuông ABCD.
Góc giữa cạnh bên (SAB) và mặt đáy là góc S N O ^ = 60 o
Xét tam giác SNO, ta có SO = NO tan600 = a 3
Lại có M là trung điểm của SD nên:
N là trung điểm của CD nên S ∆ A C N = 1 4 S A B C D = 1 4 4 a 2 = a 2
Do đó, thể tích khối MACN là
Chọn D
Thể tích khối chóp S. ABCD là:
Thể tích tứ diện SMNC là:
.
Thể tích tứ diện NACD là:
.
Thể tích tứ diện MABC là:
.
Thể tích tứ diện SAMN là:
.
Mặt khác ta có:
Suy ra:
Chọn C