Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp:
Sử dụng công thức tỉ số thể tích cho khối chóp tam giác
(Công thức Simson): Cho khối chóp S.ABC, các điểm A1, B1, C1 lần lượt
thuộc SA, SB, SC. Khi đó,
Cách giải:
ABCD là hình chữ nhật
Ta có:
Thể tích khối chóp S.ABCD là:
Ta có:
Chọn: B
Chú ý: Công thức tỉ số thể tích trên chỉ áp dụng cho chóp tam giác.
Gọi H là hình chiếu của S lên mp(ABCD), suy ra H thuộc BD (ABCD là hình thoi, SA=SB=SC).
Ta có: SA=SC=BA=BC=3 cm, suy ra SO=BO, suy ra tam giác SBD là tam giác vuông (đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền).
0,5.SB.SD=6, suy ra SD=4 cm, suy ra BD=5 cm, AC=\(\sqrt{11}\) cm, SH=2,4 cm.
Thể tích cần tìm là V=1/3.2,4.0,5.5.\(\sqrt{11}\)=2\(\sqrt{11}\) (cm3).
Chọn C
Dựa vào giả thiết ta có B', C', D' lần lượt là hình chiếu của A lên SB, SC, SD.
Tam giác SAC vuông cân tại A nên C' là trung điểm của SC.
Trong tam giác vuông SAB' ta có:
Gọi H là trung điểm AB \(\Rightarrow SH\perp\left(ABCD\right)\)
\(\Rightarrow\) CH là hình chiếu vuông góc của SC lên (ABCD)
\(\Rightarrow\widehat{SCH}=60^0\)
Do \(\widehat{ABD}=60^0\Rightarrow\) các tam giác ABD và BCD là tam giác đều cạnh a
\(\Rightarrow\widehat{ABC}=120^0\)
Áp dụng định lý hàm cos cho tam giác BCH:
\(CH=\sqrt{BC^2+BH^2-2BC.BH.cos120^0}=\dfrac{a\sqrt{7}}{2}\)
\(\Rightarrow SH=CH.tan60^0=\dfrac{a\sqrt{21}}{2}\)
\(V=\dfrac{1}{3}SH.2S_{ABD}=\dfrac{1}{3}.\dfrac{a\sqrt{21}}{2}.2.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^3\sqrt{7}}{8}\)
Chọn A
Phương pháp:
+ Xác định chiều cao của hình chóp bằng cách sử dụng: Nếu SA = SB = SC thì S thuộc trục đường tròn ngoại tiếp tam giác ABC hay chân đường cao hạ từ S xuống (ABC) trùng với tâm đường tròn ngoại tiếp
tam giác . ABC
+ Tính chiều cao SH dựa vào định lý Pyatgo
+ Tính thể tích theo công thức với h là chiều cao hình chóp, S là diện tích đáy.
Cách giải:
Vì ABCD là hình thoi nên AB = BC mà nên ABC là
tam giác đều cạnh a.
Gọi H là trọng tâm tam giác ABC, O là giao điểm hai đường chéo hình thoi.
Vì SA = SB = SC nên S thuộc trục đường tròn ngoại tiếp tam giác ABC hay chân đường cao hạ từ S xuống (ABC) trùng với tâm đường tròn ngoại tiếp H của tam giác ABC. Hay
+ Vì ABC đều cạnh a tâm H nên