K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 8 2021

Gọi O là tâm đáy và G là giao điểm của SO và MN

Do MN là đường trung bình tam giác SAC \(\Rightarrow\) G là trung điểm SO 

\(\overrightarrow{BO}=\dfrac{1}{2}\overrightarrow{BD}\) ; \(\overrightarrow{OG}=\dfrac{1}{2}\overrightarrow{OS}\) ; \(\overrightarrow{GM}=\dfrac{1}{2}\overrightarrow{NM}=\dfrac{1}{4}\overrightarrow{CA}\) ; \(\overrightarrow{GN}=\dfrac{1}{2}\overrightarrow{MN}=\dfrac{1}{4}\overrightarrow{AC}\)

Ta có:

\(\left\{{}\begin{matrix}\overrightarrow{BM}=\overrightarrow{BO}+\overrightarrow{OG}+\overrightarrow{GM}\\\overrightarrow{DN}=\overrightarrow{DO}+\overrightarrow{OG}+\overrightarrow{GN}\end{matrix}\right.\)

\(\overrightarrow{BM}.\overrightarrow{CN}=0\Rightarrow\left(\overrightarrow{BO}+\overrightarrow{OG}+\overrightarrow{GM}\right)\left(\overrightarrow{CO}+\overrightarrow{OG}+\overrightarrow{GN}\right)=0\)

\(\Leftrightarrow\left(\dfrac{1}{2}\overrightarrow{BD}+\dfrac{1}{2}\overrightarrow{OS}+\dfrac{1}{4}\overrightarrow{CA}\right)\left(\dfrac{1}{2}\overrightarrow{DB}+\dfrac{1}{2}\overrightarrow{OS}+\dfrac{1}{4}\overrightarrow{AC}\right)=0\)

\(\Leftrightarrow-\dfrac{1}{4}BD^2+\dfrac{1}{4}OS^2-\dfrac{1}{4}AC^2=0\) (3 vecto \(\overrightarrow{OS};\overrightarrow{BD};\overrightarrow{CA}\) đôi một vuông góc nên tích vô hướng giữa các cặp đều bằng 0)

\(\Leftrightarrow SO^2=2AC^2\Rightarrow SO=AC\sqrt{2}=2a\)

\(V=\dfrac{1}{3}SO.AB^2=\dfrac{2}{3}a^3\)

NV
9 tháng 8 2021

undefined

27 tháng 10 2018

4 tháng 12 2021

4 tháng 12 2021

1: BC vuông góc AB

BC vuông góc SA

=>BC vuông góc (SAB)

=>(SAB) vuông góc (SBC)

21 tháng 3 2022

kết quả là em lớp 5

21 tháng 3 2022

k biết thì đừng trả lời e nhé

NV
31 tháng 3 2023

a. Em kiểm tra lại đề bài xem có nhầm lẫn đâu không.

Ta có CN cắt AB tại N (do N là trung điểm AB) nên không tồn tại \(d\left(CN,AB\right)\) (chỉ có khoảng cách giữa 2 đường thẳng song song hoặc chéo nhau chứ không có khoảng cách giữa 2 đường thẳng cắt nhau).

b.

Gọi E là điểm đối xứng D qua A \(\Rightarrow DE=2AD=2BC\), gọi F là trung điểm SE.

\(\Rightarrow MF\) là đường trung bình tam giác SDE \(\Rightarrow\left\{{}\begin{matrix}MF=\dfrac{1}{2}DE=BC\\MF||DE||BC\end{matrix}\right.\)

\(\Rightarrow\) Tứ giác BCMF là hình bình hành \(\Rightarrow CM||BF\)

Lại có AM là đường trung bình tam giác SDE \(\Rightarrow AM||SE\)

\(\Rightarrow\left(ACM\right)||\left(SBE\right)\Rightarrow d\left(SB,CM\right)=d\left(\left(ACM\right),\left(SBE\right)\right)=d\left(A;\left(SBE\right)\right)\)

Gọi H là trung điểm BE, do \(AE=AD=AB\Rightarrow\Delta ABE\) vuông cân tại A

\(\Rightarrow AH\perp BE\Rightarrow BE\perp\left(SAH\right)\)

Trong mp (SAH), từ A kẻ \(AK\perp SH\) \(\Rightarrow AK\perp\left(SBE\right)\)

\(\Rightarrow AK=d\left(A;\left(SBE\right)\right)=d\left(SB,CM\right)\)

\(AH=\dfrac{1}{2}BE=\dfrac{1}{2}\sqrt{AB^2+AE^2}=\dfrac{a\sqrt{2}}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông SAH:

\(AK=\dfrac{SA.AH}{\sqrt{SA^2+AH^2}}=\dfrac{a\sqrt{21}}{7}\)

NV
31 tháng 3 2023

loading...

Cho hình chóp tứ giác $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$ và $SA$ vuông góc với mặt phẳng $(ABCD)$. Gọi $O$ là trung điểm của cạnh $SC$, $M$, $N$ lần lượt là trung điểm của các cạnh $SB$, $SD$. Gọi $P$ là điểm nằm trên đường thẳng $AN$ sao cho $OP \perp AM$. Chứng minh rằng: $$\frac{PM}{PN} = \frac{1}{3}.$$ **Lời giải:** Áp dụng định lí Menelaus lần lượt trên tam giác $ABC$ và $ACD$, ta có: $$\frac{SM}{SB}\cdot...
Đọc tiếp

Cho hình chóp tứ giác $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$ và $SA$ vuông góc với mặt phẳng $(ABCD)$. Gọi $O$ là trung điểm của cạnh $SC$, $M$, $N$ lần lượt là trung điểm của các cạnh $SB$, $SD$. Gọi $P$ là điểm nằm trên đường thẳng $AN$ sao cho $OP \perp AM$. Chứng minh rằng: $$\frac{PM}{PN} = \frac{1}{3}.$$ **Lời giải:** Áp dụng định lí Menelaus lần lượt trên tam giác $ABC$ và $ACD$, ta có: $$\frac{SM}{SB}\cdot \frac{BO}{OC}\cdot \frac{CQ}{QA} = 1,$$ $$\frac{SD}{SC}\cdot \frac{CO}{OB}\cdot \frac{BP}{PA} = 1,$$ trong đó $Q$ là giao điểm của $SN$ và $OM$. Do đó, ta có: $$\frac{SM}{SB} = \frac{SC}{SO},$$ $$\frac{SD}{SC} = \frac{SB}{SO}.$$ Tiếp theo, ta chứng minh $AP \parallel DC$. Ta có $\angle BSA = 90^{\circ}$ và $\angle BSC = \angle DSC$ nên tam giác $BSD$ vuông cân tại $S$. Do đó $SM = NS$. Khi đó, ta có: $$\frac{SM}{SB} = \frac{NS}{NB} = \frac{1}{2}.$$ Từ đó ta suy ra $\frac{SC}{SO} = \frac{1}{2}$, hay $SO = 2SC$. Áp dụng định lí Pythagore trong tam giác $SBO$ ta có: $SB = \sqrt{2}a$. Mặt khác, ta có $OM = \frac{1}{2}a$ và $OS = \frac{2}{3}SC = \frac{1}{3}a$, suy ra $BM = \frac{\sqrt{2}}{2}a$ và $BO = \frac{\sqrt{6}}{2}a$. Áp dụng định lí Pythagore trong tam giác $SDO$ ta có: $SD = \sqrt{6}a$. Mặt khác, ta có $ON = \frac{1}{2}a$ và $OS = \frac{2}{3}SC = \frac{1}{3}a$, suy ra $DN = \frac{\sqrt{2}}{2}a$ và $DO = \frac{\sqrt{6}}{2}a$. Ta có $AP \parallel DC$ khi và chỉ khi: $$\frac{BP}{PA} = \frac{AD}{DC} = \sqrt{2} - 1,$$ trong đó ta đã sử dụng tính chất hình học của hình vuông. Từ định lí Menelaus cho tam giác $ACD$, ta có: $$\frac{AD}{CD}\cdot \frac{CP}{PA}\cdot \frac{NB}{ND} = 1.$$ Do đó, ta có: $$\frac{BP}{PA} = \frac{AD}{CD}\cdot \frac{ND}{NB} = (\sqrt{2} - 1)\cdot \frac{\frac{1}{2}a}{\frac{\sqrt{2}}{2}a} = \frac{2 - \sqrt{2}}{2}.$$ Ta cũng có thể tính được $\frac{PM}{PN}$ bằng cách sử dụng định lí Menelaus cho tam giác $ANB$: $$\frac{AP}{PB}\cdot \frac{MB}{MN}\cdot \frac{SN}{SA} = 1,$$ từ đó ta có: $$\frac{PM}{PN} = \frac{SN}{SM}\cdot \frac{PB}{PA}\cdot \frac{MB}{NB} = \frac{2}{1}\cdot \frac{2 - \sqrt{2}}{2}\cdot \frac{\frac{\sqrt{2}}{2}a}{\frac{\sqrt{2}}{2}a} = \frac{1}{3}.$$ Vậy $\frac{PM}{PN} = \frac{1}{3}$, ta đã chứng minh được bài toán.

0
22 tháng 10 2019

Đáp án A

Xét tam giác SAC vuông tại A có AP là đường cao, ta có:

22 tháng 11 2018

Đáp án A

25 tháng 6 2023

Tự vẽ hình nhé!

Ta có:

\(V_{OBCNM}=\dfrac{1}{3}d\left(O;\left(BCNM\right)\right).S_{BCNM}=\dfrac{1}{3}.\dfrac{1}{2}d\left(A;\left(SBC\right)\right).\dfrac{3}{4}S_{SBC}=\dfrac{1}{8}V_{SABC}=\dfrac{1}{16}V_{SABCD}\)

\(\Rightarrow\dfrac{V_{OBCNM}}{V_{SABCD}}=\dfrac{1}{16}\)