K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Vì hình chóp S.ABC đều, gọi G là hình chiếu của S trên (ABC) nên G là tâm của đáy ABC là tam giác đều do đó G cũng là trọng tâm hay trực tâm của tam giác ABC.

Gọi AG cắt BC tại D

a) Ta có A là hình chiếu của A trên (ABC)

G là hình chiếu của S trên (ABC)

\( \Rightarrow \) AG là hình chiếu của SA trên (ABC)

\( \Rightarrow \left( {SA,\left( {ABC} \right)} \right) = \left( {SA,AG} \right) = \widehat {SAG}\)

Tam giác ABC đều cạnh a nên \(AD = \frac{{a\sqrt 3 }}{2}\)

Mà G là trọng tâm nên \(AG = \frac{2}{3}AD = \frac{{a\sqrt 3 }}{3}\)

Xét tam giác SAG vuông tại G có

\(SG = \sqrt {S{A^2} - A{G^2}}  = \sqrt {{b^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}}  = \sqrt {{b^2} - \frac{{{a^2}}}{3}} \)

\(\sin \widehat {SAG} = \frac{{SG}}{{SA}} = \sqrt {{b^2} - \frac{{{a^2}}}{3}} :b = \sqrt {1 - \frac{{{a^2}}}{{3{b^2}}}} \)

b) Ta có \(AG \bot BC,SG \bot BC \Rightarrow BC \bot \left( {SAD} \right);SD \subset \left( {SAD} \right) \Rightarrow BC \bot SD\)

\(BC \bot AD\) (G là trực tâm)

\(\begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\ \Rightarrow \left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \left( {AD,SD} \right) = \widehat {SDA}\end{array}\)

Mà G là trọng tâm nên \(GD = \frac{1}{3}AD = \frac{{a\sqrt 3 }}{6}\)

Xét tam giác SGD vuông tại G có

\(\tan \widehat {SGD} = \frac{{SG}}{{GD}} = \sqrt {{b^2} - \frac{{{a^2}}}{3}} :\frac{{a\sqrt 3 }}{6} = \frac{6}{{a\sqrt 3 }}.\sqrt {{b^2} - \frac{{{a^2}}}{3}} \)

 

11 tháng 9 2017

Chân đường cao hình chóp đều S.ABCD trùng với tâm O của đáy ABCD. AO là hình chiếu của SA lên (ABCD)

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án C

21 tháng 8 2023

tham khảo

loading...

Mô hình hoá chân cột bằng gang bằng cụt chóp tứ giác đều \(ABCD.A'B'C'D'\) với \(O,O'\) là tâm của hai đáy.Vậy \(AB=2a,A'B'=a,OO'=2a\)

a)Gọi \(M,M'\) lần lượt là trung điểm của \(CD,C'D'.\)

\(A'B'C'D'\) là hình vuông \(\Rightarrow O'M\perp C'D\)

\(CDD'C\) là hình thang cân \(\Rightarrow MM'\perp C'D'\)

Vậy \(\widehat{MM'O}\) là góc phẳng nhị diện giữa mặt bên và đáy nhỏ,\(\widehat{M'MO}\) là góc phẳng nhị diện giữa mặt bên và đáy lớn.

Kẻ \(M'H\perp OM\left(H\in OM\right)\)

\(OMM'O'\) là hình chữ nhật

\(\Rightarrow OH=O'M'=\dfrac{a}{2},OM=a,MH=OM-OH=\dfrac{a}{2}\tan\widehat{M'MO}=\dfrac{M'H}{MH}=4\)

\(\Rightarrow\widehat{M'MO}=75,96^o\Rightarrow\widehat{MM'O'}=180^o-\widehat{M'MO}\\ =104,04^o\)

b)Diện tích đáy lớn là:\(S=AB^2=4a^{^2}\)

Diện tích đáy bé là:\(S'=A'B'^2=a^2\)

Thể tích hình chóp cụt là:

\(V_1=\dfrac{1}{3}h\left(S+\sqrt{SS'}+S'\right)\\ =\dfrac{1}{3}.2a\left(4a^2+\sqrt{4a^2.a^2}+a^2\right)=\dfrac{14a^3}{3}\)

Thể tích hình trụ rỗng là:\(V_2=\pi R^2h=\pi\left(\dfrac{a}{2}\right)^2.2a=\dfrac{\pi a^3}{2}\)

Thể tích chân cột là:\(V=V_1-V_2=\left(\dfrac{14}{3}-\dfrac{\pi}{2}\right)a^3\)

7 tháng 3 2017

Chọn D

Phương pháp

Góc giữa cạnh bên SA với mặt đáy là góc giữa SA và hình chiếu của SA trên mặt phẳng đáy.

Gọi O là giao điểm của AC và BD

Ta có SABCD là hình chóp đều nên O là hình chiếu của S trên

 

(ABCD).

NV
10 tháng 4 2021

Gọi O là tâm đáy, M là trung điểm AB 

Ta có: \(\left\{{}\begin{matrix}SO\perp\left(ABC\right)\\OM\perp AB\end{matrix}\right.\) \(\Rightarrow\widehat{SMO}\) hay là góc giữa mặt bên và mặt đáy

\(\Rightarrow\widehat{SMO}=60^0\) \(\Rightarrow SO=OM.tan60^0=\dfrac{1}{3}CM.tan60^0=\dfrac{1}{3}AB.\dfrac{\sqrt{3}}{2}.tan60^0=\dfrac{a}{2}\)

\(CO=\dfrac{2}{3}CM=\dfrac{2}{3}.AB\dfrac{\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)

\(SC=\sqrt{SO^2+OC^2}=\dfrac{a\sqrt{21}}{6}\)

17 tháng 1 2018

Chọn C

Xác định được 

Khi đó ta tính được 

Trong mặt phẳng (ABC) lấy điểm D sao cho ABCD là hình chữ nhật => AB//(SCD) nên

Từ (1) và (2) suy ra 

Xét tam giác vuông SAD có

12 tháng 3 2019

Chọn đáp án B

Gọi G là trọng tâm tam giác đều ABC, E là trung điểm của SA, K, H là hình chiếu của G, E lên SA.

HE ⊥ BC vì HE là trung tuyến trong tam giác cân HBC.

Suy ra HE là đoạn vuông góc chung của SABC

Xét tam giác SAG vuông tại G. SG = tan 60 0 .AG = a

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Gọi \(O\) là trọng tâm tam giác \(ABC\).

\(\begin{array}{l} \Rightarrow SO \bot \left( {ABC} \right)\\ \Rightarrow \left( {SA,\left( {ABC} \right)} \right) = \left( {SA,OA} \right) = \widehat {SAO},\\\left( {SB,\left( {ABC} \right)} \right) = \left( {SB,OB} \right) = \widehat {SBO},\\\left( {SC,\left( {ABC} \right)} \right) = \left( {SC,OC} \right) = \widehat {SCO}\end{array}\)

Tam giác \(ABC\) đều \( \Rightarrow OA = OB = OC\).

\(\begin{array}{l}SA = SB = SC \Rightarrow \frac{{OA}}{{SA}} = \frac{{OB}}{{SB}} = \frac{{OC}}{{SC}} \Rightarrow \cos \widehat {SAO} = \cos \widehat {SBO} = {\mathop{\rm co}\nolimits} \widehat {sSCO}\\ \Rightarrow \left( {SA,\left( {ABC} \right)} \right) = \left( {SB,\left( {ABC} \right)} \right) = \left( {SC,\left( {ABC} \right)} \right)\end{array}\)

4 tháng 12 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi I là trung điểm của cạnh B'C'. Theo giả thiết ta có AI ⊥ (A'B'C') và ∠ A A ′ I   =   60 ο . Ta biết rằng hai mặt phẳng (ABC) và (A'B'C') song song với nhau nên khoảng cách giữa hai mặt phẳng chính là khoảng cách AI.

Do đó 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ B′C′ ⊥ AA′

Mà AA′ // BB′ // CC′ nên B’C’ ⊥ BB’

 

Vậy mặt bên BCC’B’ là một hình vuông vì nó là hình thoi có một góc vuông.

22 tháng 6 2017

ĐÁP ÁN: D