K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2019

Đáp án B

13 tháng 1 2018

Đáp án A

Do ABCD là hình vuông nên hình tròn nội tiếp ABCD có bán kính là r =  a 2

Vậy diện tích xung quanh của hình nón cần tìm là

1 tháng 11 2017

Đáp án A.

Trong mặt phẳng (ABCD) gọi: H là trung điểm AD.

Gọi I,J lần lượt là trung điểm của BC và G là trọng tâm  ∆ SAD

 

Đường thẳng d qua O và vuông góc với (ABCD) gọi là trục của đường tròn ngoại tiếp đáy (ABCd).

∆ qua G và vuông góc với (SAD) là trục của đường tròn ngoại tiếp (SAD).

Trong mặt phẳng (SHI), gọi I =  ∆   ∩ d

=> J cách đều các đỉnh của hình chóp

=> J là tâm mặt cầu ngoại tiếp S.ABCD có bán kính

R = JD = 

Có 

14 tháng 7 2017

Chọn đáp án A

+ Dễ thấy tam giác ABC vuông tại B.

+ Gọi p là nửa chu vi

+ Gọi I là tâm đường tròn nội tiếp tam giác từ giả thiết các mặt bên tạo với đáy ABC một góc  30 độ ta suy ra I là chân đường cao của khối chóp

21 tháng 2 2019

Đáp án A

ABCD là hình thanh cân có AB = BC = CD = a; AD = 2a nên M là tâm của đáy ABCD.

SA = AD = 2a; SA ⊥ (ABCD) => tam giác SAD vuông cân tại A nên tâm mặt cầu ngoại tiếp hình chóp S.ABCD là trung điểm N của SD

28 tháng 10 2017

Đáp án A

NV
21 tháng 4 2021

\(SH\perp\left(ABC\right)\Rightarrow\widehat{SAH}\) là góc giữa SA và (ABC)

\(SH=\dfrac{a\sqrt{3}}{2}\) (đường trung tuyến trong tam giác đều SBC cạnh a)

\(AH=\dfrac{a\sqrt{3}}{2}\) (đường trung tuyến trong tam giác đều ABC cạnh a)

\(tan\widehat{SAH}=\dfrac{SH}{AH}=1\Rightarrow\widehat{SAH}=45^0\)

4 tháng 11 2019

24 tháng 12 2017

Đáp án A