Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
=>\(\left(SAC\right)\cap\left(SBD\right)=SO\)
AB//CD
S thuộc (SAB) giao (SCD)
=>(SAB) giao (SCD)=xy, xy qua S, xy//AB//DC
2:
Xét ΔSBC có SM/SB=SN/SC
nên MN//BC
=>MN//AD
=>AMND là hình thang
Xét ΔSBD có BM/BS=BO/BD
nên MO//SD
=>MO//(SAD)
a: Xét hình thang ABCD có
M,N lần lượt là trung điểm của AB,CD
nên MN là đường trung bình
=>MN//AD//BC
=>MN//(SAD) và MN//(SBC)
b: Gọi giao của MN với BD là O
=>O thuộc (SBD) giao (MNP)
MP//SB
=>\(\left(SBD\right)\cap\left(MNP\right)=xy\left(O\in xy\right);\)xy//MP//SB
Từ (1) (2) và (3) suy ra ba điểm F, G, H thuộc giao tuyến của hai mặt phẳng (MNP) và (ABCD).
Do đó ba điểm F, G, H thẳng hàng và G nằm giữa F và H.
Chọn C.
a: Chọn mp(SAB) có chứa MN
Ta có: \(AB\subset\left(SAB\right)\)
\(AB\subset\left(ABCD\right)\)
Do đó: \(\left(SAB\right)\cap\left(ABCD\right)=AB\)
Gọi P là giao điểm của MN với AB
=>P là giao điểm của MN với mp(ABCD)
b: Ta có: SN+NB=SB
=>2NB+NB=SB
=>SB=3NB
=>\(\dfrac{SN}{SB}=\dfrac{2}{3}\)
Xét ΔSBA có P,M,N thẳng hàng
nên \(\dfrac{PB}{PA}\cdot\dfrac{MA}{MS}\cdot\dfrac{NS}{NB}=1\)
=>\(\dfrac{PB}{PA}\cdot1\cdot2=1\)
=>\(\dfrac{PB}{PA}=\dfrac{1}{2}\)
=>B là trung điểm của AP
Trong mp(ABCD), gọi O là giao điểm của AC và BD
Ta có: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔAPC có
B,O lần lượt là trung điểm của AP,AC
=>BO là đường trung bình của ΔAPC
=>BO//PC
=>BD//PC
Ta có: PC//BD
BD\(\subset\)(SBD)
PC không nằm trong mp(SBD)
Do đó: PC//(SBD)
a: Xét ΔSAC có
H,K lần lượt là trung điểm của SA,SC
=>HK là đường trung bình
=>HK//AC
Xét (GHK) và (ABCD) có
HK//AC
\(G\in\left(GHK\right)\cap\left(ABCD\right)\)
Do đó: (GHK) giao (ABCD)=xy, xy đi qua G và xy//HK//AC
b: Chọn mp(SBD) có chứa SD
Gọi O là giao điểm của AC và BD
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔABC có
G là trọng tâm
BO là trung tuyến của ΔABC
Do đó: B,O,G thẳng hàng
=>G\(\in\)BD
Trong mp(SAC), gọi I là giao điểm của SO với HK
\(I\in SO\subset\left(SBD\right);I\in HK\subset\left(GHK\right)\)
=>\(I\in\left(SBD\right)\cap\left(GHK\right)\)(1)
\(G\in BD\subset\left(SBD\right);G\in\left(GHK\right)\)
=>\(G\in\left(SBD\right)\cap\left(GHK\right)\left(2\right)\)
Từ (1) và (2) suy ra \(\left(SBD\right)\cap\left(GHK\right)=GI\)
Gọi M là giao điểm của SD với GI
=>M là giao điểm của SD với (SHK)
c: Xét ΔSAC có
O,K lần lượt là trung điểm của CA,CS
=>OK là đường trung bình của ΔSAC
=>OK//SA và OK=SA/2
OK=SA/2
SH=SA/2
Do đó: OK=SH
Xét tứ giác SHOK có
SH//OK
SH=OK
Do đó: SHOK là hình bình hành
=>HK cắt SO tại trung điểm của mỗi đường
mà E là trung điểm của HK
nên Elà trung điểm của SO
=>E trùng với I
=>(SBD) giao (GHK)=GE
=>G,E,M thẳng hàng
a, \(\left\{{}\begin{matrix}S\subset\left(SAC\right)\\O\subset\left(SAC\right)\end{matrix}\right.\Rightarrow SO\subset\left(SAC\right)\)
\(\left\{{}\begin{matrix}S\subset\left(SBD\right)\\O\subset\left(SBD\right)\end{matrix}\right.\Rightarrow SO\subset\left(SBD\right)\)
\(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)
Gọi \(K=AD\cap BC\)
\(\Rightarrow\left\{{}\begin{matrix}S\subset\left(SAD\right)\\K\subset\left(SAD\right)\end{matrix}\right.\Rightarrow SK\subset\left(SAD\right)\)
\(\left\{{}\begin{matrix}S\subset\left(SBC\right)\\K\subset\left(SBC\right)\end{matrix}\right.\Rightarrow SK\subset\left(SBC\right)\)
\(\Rightarrow SK=\left(SAD\right)\cap\left(SBC\right)\)
olloz
Cho hình chóp A.ABCD sửa lại cho mk thành S.ABCD