K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

Chọn (C) hình thoi và không phải hình chữ nhật.

bạn vẽ hình rồi  lấy compa quay xem có trong hình tròn k là đc

3 tháng 11 2018

dung roi ban

12 tháng 10 2018

a) Xét hình bình hành ABCD có I, K là trung điểm của AB và DC nên IK là đường trung bình. Vậy thì IK = BC = AD.

Xét tứ giác ADKI có 4 cạnh bằng nhau nên nó là hình thoi.

b) Chứng minh tương tự, ta có KCBI là hình thoi.

Vậy thì KA là phân giác góc \(\widehat{DKI}\) , KB là phân giác góc \(\widehat{IKC}\)

Vậy nên \(\widehat{AKB}=\widehat{AKI}+\widehat{IKB}=\frac{1}{2}\widehat{DKI}+\frac{1}{2}\widehat{IKC}=\frac{1}{2}.180^o=90^o\)

Vậy \(\widehat{AKB}=90^o\)

c) Do AB = DC = 2 BC = 2AD nên chu vi hình bình hành bằng 6 lần BC. Vậy BC = 30 : 6 = 5 (cm)

AB = 2 x 5 = 10 (cm)

Do IKCB là hình thoi nên BK là phân giác góc IBC. Vậy nên \(\widehat{IBK}=60^o\) 

Suy ra IBK là tam giác đều hay KB = IK = BC = 5(cm)

Áp dụng định lý Pi-ta-go, ta có: \(AK=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)

Vậy diện tích tam giác AKB bằng: \(\frac{1}{2}.5.5\sqrt{3}=\frac{25}{2}\sqrt{3}\left(cm^2\right)\)

Dễ thấy diện tích hình bình hành gấp đôi diện tích tam giác AKB nên \(S_{ABCD}=25\sqrt{3}\left(cm^2\right)\)

23 tháng 10 2017

Sau khi tăng kích thước của mỗi chiều, ta được hình chữ nhật A’B’C’D’ có chiều dài A’B’ = (40 + x) cm, chiều rộng B’C’ = (25 + x) cm.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Diện tích hình chữ nhật mới:

S = (40 + x)(25 + x) = 1000 + 65x + x 2

S không phải là hàm số bậc nhất đối với x vì có bậc của biến số x là bậc hai.

Chu vi hình chữ nhật mới:

P = 2.[(40 + x) + (25 + x)] = 4x + 130

P là hàm số bậc nhất đối với x có hệ số a = 4, hệ số b = 130.