K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

a) Các góc tạo bởi một đường thẳng cắt hai đường thẳng

b) \(\widehat{U}_2=144^0;\widehat{V}_1=144^0\)

20 tháng 4 2017

a) ˆB3B3^

b) ˆB2B2^

c) 1800 ; là cặp góc trong cùng phía

d) Bằng cặp góc so le trong ˆB2B2^=ˆA4A4^.



8 tháng 7 2017

a) \(\widehat{A_1}\)\(=\widehat{B_3}\)(vì là cặp góc so le trong)

b)\(\widehat{A_2}\)\(=\widehat{B_2}\)(vì là cặp góc đồng vị)

c)\(\widehat{B_3}\)\(+\widehat{A_4}\)\(=180^0\)(vì là cặp góc trong cùng phía)

d)\(\widehat{A_2}\)\(=\widehat{B_4}\)(vì là cặp góc cùng bằng \(\widehat{A_4}\) )

Ủng hộ mk nhé!!! ^.^

20 tháng 4 2017

Xem hình vẽ. Có thể tính bằng nhiều cách, chẳng hạn:

+Vì d’ //d’’ có: \(\widehat{E}_1\) và góc 600 là hai góc so le trong nên \(\widehat{E}_1\)= 600

+Vì d’ // d’’ có: \(\widehat{G}_2\)và góc 1100 là hai góc đồng vị nên \(\widehat{G_2}\) = 1100

+ \(\widehat{G}_2\)+\(\widehat{G}_3\)=\(180^0\) (hai góc kề bù)

Nên \(\widehat{G_3}=180^0-\widehat{G}_2=180^0-110^0=70^0\)

+) \(\widehat{D}_4\)1100 (vì là hai góc đối đỉnh)

+) \(\widehat{A}_5\) = \(\widehat{A}_1\) (Hai góc đối đỉnh)

\(\widehat{A}_1\)= 600 (vì là hai góc đồng vị)

Nên \(\widehat{A}_5\) = 600 .

+ \(\widehat{B}_6\) = \(\widehat{B}_2\)(vì là hai góc đối đỉnh)

\(\widehat{B}_2\) + 1100 = 1800 (hai góc trong cùng phía)

Nên \(\widehat{B}_2\) = 1800 - 1100 = 700.

Do đó: \(\widehat{B}_6\) = 700



20 tháng 4 2017

a) Năm cặp đường thẳng vuông góc là:

d3 ⊥ d4; d3 ⊥ d5; d3 ⊥ d7; d1 ⊥ d8; d1 ⊥ d2

b) Bốn cặp đường thẳng song song là: d4//d5; d5//d7; d4//d7; d8//d2

Chọn C

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Góc ở vị trí so le trong với góc \(\widehat {{B_2}}\) là: \(\widehat {{A_4}}\)

Góc ở vị trí đồng vị với góc \(\widehat {{B_2}}\) là: \(\widehat {{A_2}}\)

b) Vì a // b nên:

+) \(\widehat {{A_4}} = \widehat {{B_2}}\)( 2 góc so le trong), mà \(\widehat {{B_2}} = 40^\circ \) nên \(\widehat {{A_4}} = 40^\circ \)

+) \(\widehat {{A_2}} = \widehat {{B_2}}\) ( 2 góc đồng vị), mà \(\widehat {{B_2}} = 40^\circ \) nên \(\widehat {{A_2}} = 40^\circ \)

Ta có: \(\widehat {{B_2}} + \widehat {{B_3}} = 180^\circ \) ( 2 góc kề bù) nên \(40^\circ  + \widehat {{B_3}} = 180^\circ  \Rightarrow \widehat {{B_3}} = 180^\circ  - 40^\circ  = 140^\circ \)

c) Ta có: \(\widehat {{B_2}} + \widehat {{B_1}} = 180^\circ \) ( 2 góc kề bù) nên \(40^\circ  + \widehat {{B_1}} = 180^\circ  \Rightarrow \widehat {{B_1}} = 180^\circ  - 40^\circ  = 140^\circ \)

Vì a // b nên \(\widehat {{A_1}} = \widehat {{B_1}}\) (2 góc đồng vị) nên \(\widehat {{A_1}} = 140^\circ \)

8 tháng 8 2017

Bài 20 (Sách bài tập - tập 1 - trang 105)

Trên hình 5 người ta cho biết a // b và P1ˆ=Qˆ1=300P1^=Q^1=300

a) Viết tên một cặp góc đồng vị khác và nói rõ số đo mỗi góc

b) Viết tên một cặp góc so le trong và nói rõ số đo của mỗi góc

c) Viết tên một cặp góc trong cùng phía và nói rõ số đo mỗi góc

d) Viết tên một cặp góc ngoài cùng phía và cho biết tổng số đo hai góc đó