K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

A B C D I J O

\(Ta\text{ }có\text{ }:3\overrightarrow{IA}+2\overrightarrow{IC}-2\overrightarrow{ID}=0\\ \Rightarrow3\overrightarrow{IA}+2\left(\overrightarrow{IC}-\overrightarrow{ID}\right)=0\\ \Rightarrow3\overrightarrow{IA}=-2\left(\overrightarrow{IC}-\overrightarrow{ID}\right)\\ \Rightarrow3\overrightarrow{IA}=-2\overrightarrow{DC}=2\overrightarrow{BA}\\ \Rightarrow\overrightarrow{IA}=\frac{2}{3}\overrightarrow{BA}\\ \Rightarrow I;B;A\text{ thẳng hàng},I\text{ nằm giữa }A;B\left(\frac{2}{3}>0;IA< BA\right)\)

\(\text{Lại có }:\overrightarrow{JA}-2\overrightarrow{JB}+2\overrightarrow{JC}=0\\ \Rightarrow\overrightarrow{JA}=2\left(\overrightarrow{JB}-\overrightarrow{JC}\right)\\ \Rightarrow\overrightarrow{JA}=2\overrightarrow{CB}=2\overrightarrow{DA}\\ \Rightarrow J;D;A\text{ thẳng hàng},D\text{ nằm giữa }J;A\left(2>0;JA>DA\right)\)

\(\text{Lại có }:O\text{ là trung điểm }AC;BD\left(\text{Tính chất hình bình hành}\right)\\ \Rightarrow\overrightarrow{JO}=\overrightarrow{JA}+\overrightarrow{AO}=-2\overrightarrow{AD}+\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{AB}\right)\\ =-2\overrightarrow{AD}+\frac{1}{2}\overrightarrow{AD}+\frac{1}{2}\overrightarrow{AB}=-\frac{3}{2}\overrightarrow{AD}+\frac{1}{2}\overrightarrow{AB}\)

\(\text{Mặt khác }:\overrightarrow{JI}=\overrightarrow{JA}+\overrightarrow{AI}=-2\overrightarrow{AD}+\frac{2}{3}\overrightarrow{AB}=\frac{4}{3}\left(-\frac{3}{2}\overrightarrow{AD}+\frac{1}{2}\overrightarrow{AB}\right)\\ \Rightarrow\overrightarrow{JI}=\frac{4}{3}\overrightarrow{JO}\\ \Rightarrow J;I;O\text{ thẳng hàng}\)

11 tháng 8 2019

cảm ơn bạn nha

NV
15 tháng 11 2019

\(3IA+2\left(IC+DI\right)=0\Leftrightarrow3IA+2DC=0\)

\(\Leftrightarrow3IO+3OA+2DA+2AC=0\Leftrightarrow3IO+3OA-2AD-4OA=0\)

\(\Leftrightarrow3IO-OA-2AD=0\Rightarrow3IO=OA+2AD\) (1)

\(JA-2JB+2JC=0\Leftrightarrow JA+2\left(BJ+JC\right)=0\)

\(\Leftrightarrow JA+2BC=0\Leftrightarrow JO+OA+2BC=0\)

\(\Leftrightarrow JO+OA+2AD=0\Rightarrow OJ=OA+2AD\) (2)

(1); (2) \(\Rightarrow OJ=3IO\) hay I;J;O thẳng hàng

Phân tích dài quá, ko hay lắm :(

29 tháng 12 2022

\(3\overrightarrow{AP}-2\overrightarrow{AC}=\overrightarrow{0}\)

\(VT=3\left(\overrightarrow{AD}+\overrightarrow{DP}\right)-2\left(\overrightarrow{AD}+\overrightarrow{DC}\right)\)

\(=3\overrightarrow{AD}+3\overrightarrow{DP}-2\overrightarrow{AD}-2\overrightarrow{DC}\)

\(=\overrightarrow{AD}+3\overrightarrow{DP}-2\overrightarrow{DC}\)

\(=\overrightarrow{AD}+3\left(\overrightarrow{DC}+\overrightarrow{CP}\right)-2\overrightarrow{DC}\)

\(=\overrightarrow{AD}+3\overrightarrow{DC}+3\overrightarrow{CP}-2\overrightarrow{DC}\)

\(=\widehat{AD}+\overrightarrow{DC}+3.\dfrac{2}{3}\overrightarrow{CO}\)

\(=\overrightarrow{AD}+\overrightarrow{DC}+2.\dfrac{1}{2}\overrightarrow{CA}\)

\(=\overrightarrow{AD}+\overrightarrow{DC}+\overrightarrow{CA}\)

\(=\overrightarrow{AC}+\overrightarrow{CA}\)

\(=\overrightarrow{AA}=\overrightarrow{0}=VP\) (điều phải chứng minh)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có:

\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0  \Leftrightarrow \left( {\overrightarrow {GI}  + \overrightarrow {IA} } \right) + \left( {\overrightarrow {GI}  + \overrightarrow {IB} } \right) + \left( {\overrightarrow {GJ}  + \overrightarrow {JC} } \right) + \left( {\overrightarrow {GJ}  + \overrightarrow {JD} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {GI}  + \left( {\overrightarrow {IA}  + \overrightarrow {IB} } \right) + 2\overrightarrow {GJ}  + \left( {\overrightarrow {JC}  + \overrightarrow {JD} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {GI}  + 2\overrightarrow {GJ}  = \overrightarrow 0  \Leftrightarrow 2\left( {\overrightarrow {GI}  + \overrightarrow {GJ} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {GI}  + \overrightarrow {GJ}  = \overrightarrow 0  \Rightarrow \)G là trung điểm của đoạn thẳng IJ

Vậy I, G, J thẳng hàng