K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Xét ΔDNC có

F là trung điểm của DC

FM//NC

Do đó: M là trung điểm của DN

Suy ra: DM=MN(1)

Xét ΔABM có 

E là trung điểm của AB

EN//AM

Do đó: N là trung điểm của BM

Suy ra: BN=NM(2)

Từ (1) và (2) suy ra DM=MN=NB

8 tháng 12 2014

Bạn tự vẽ hình nha ^^

a) Ta có: AB=CD (gt), mà E,F lần lượt và trung điểm của AB và CD.

=> EA=EB=FD=FC

Ta có: AB song song => EA song song FC

Ta có EA=FC và EA song song FC

=> AECF là hình bình hành.

Tương tự chứng minh BEDF là hình bình hành.

b) Kẻ EF.

Ta có: EA=FD (cmt); AB song song CD => EA song song FD

=> AEFD là hình bình hành

Tương tự chứng minh EBCF là hình hình hành.

Ta có: E là trung điểm AB

          K là trung điểm của BF (hai đường chéo EC và BF của hình bình hành cắt nhau tại trung điểm mỗi đường)

=> KE là đường trung bình của tam giác ABF

=> KE song song AF và KE=1/2 AF (1)

Ta có hai đường chéo AF và DE của hình bình hành AEFD => I là trung điểm của AF => IF=1/2 AF (2)

Từ (1) và (2) suy ra IF=KE và KE song song AF

=> EIFK là hình bình hành

c)  Xét hình bình hành ABCD có AC và BD là hai đường chéo => AC và BD cắt nhau tại trung điểm mỗi đường (1)

Xét hình bình hành AEFC có hai đường chéo là EF và AC => EF và AC cắt nhau tại trung điểm mỗi đường (2)

Từ (1) và (2) suy ra AC, BD, EF cùng đi qua một diểm.

d) Giả sử EIFK là hình vuông.

=> IF = IE

Mà IF=IA, IE=ID (hai đường chéo AF và DE cắt nhau tại trung điểm mỗi đường)

=> IE=ID=IA=IF

=> AF=DE

Hình bình hành AEFD có hai đường chéo bằng nhau => là hình chữ nhật.

=> DAE= 90 độ

Ta có hình bình hành ABCD có một góc vuông => là hình chữ nhật.

Vậy để EIFK là hình vuông thì ABCD phải là hình chữ nhật.

e) Gọi giao điểm của AC và DB là O

Ta có DO là đường trung tuyến xuất phát từ đỉnh D của tam giác DAC

AF là đường trung tuyến xuất phát từ đỉnh A của tam giác DAC

DO và AF cắt nhau tại M

=> M là trọng tâm của tam giác DAC

=> DM=2/3 DO, MO=1/3 DO (1)

Tương tự chứng minh NB=2/3 BO và NO=1/3 BO (2)

Ta có OB=OD (3)

Từ (1), (2) và (3) suy ra DM=NB

Ta có MN=MO+NO=1/3 DO+ 1/3 BO= 2/3 DO = 2/3 BO 

=> DM=MN=NB

 

 

 

11 tháng 10 2023

a: Gọi giao của AC và BD là O

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔADC có

AN,DO là trung tuyến

AN cắt DO tại F

Do đó: F là trọng tâm cuả ΔADC

Xét ΔABC có

AM,BO là trung tuyến

AM cắt BO tại E

Do đó: E là trọng tâm của ΔABC

b: E là trọng tâm của ΔABC

=>\(BE=\dfrac{2}{3}BO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}BD\)

F là trọng tâm của ΔDAC

=>\(DF=\dfrac{2}{3}DO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}\cdot BD\)

DF+FE+EB=DB

=>\(FE=DB-\dfrac{1}{3}DB-\dfrac{1}{3}DB=\dfrac{1}{3}DB\)

=>EB=EF=DF

1 tháng 12 2021

TK

a, Gọi O là giao điểm hai đường chéo của hình bình hành ABCD

=> O là trung điểm của AC và BD

hay OA = OC và OD = OB

Xét tam giác ADC có:

AF là đường trung tuyến ( F là trung điểm của DC)

DO là đường trung tuyến ( OA=OC)

Hai đường trung tuyến này cắt nhau tại M

=> M là trọng tâm của tam giác ADC

Tương tự, xét tam giác ABC có:

AE là đường trung tuyến ( E là trung điểm của BC)

BO là đường trung tuyến ( OA=OC)

Hai đường trung tuyến cắt nhau tại N

=> N là trọng tâm của tam giác ABC

b, 

Nối M với C ; N với C

Có OM = 1313 OD

ON = 1313 OB

mà OD = OB (cm câu a)

=> OM = ON

Xét tứ giác ANCM có:

OM = ON (cmt)

OA = OC (cm câu a)

=> tứ giác ANCM là hình bình hành

=> AM//CN hay AF//CN

Xét ΔΔ DNC có:

DF=CF (gt)

MF//CN (AF//CN)

=> DM = MN (1)

Gọi I là giao điểm của EF và MC

Xét ΔΔ BCD có:

DF = CF (gt)

BE = CE (gt)

=> EF là đường trung bình của ΔΔ BCD

=> EF//BD

hay EI//BD

Xét ΔΔ BMC có:

EI//BM ( M∈∈ BD)

BE = CE (gt)

=> MN = NB (2)

Hầy chỗ này bạn viết đề sai nữa rồi! phải là DM = MN = NB hoặc ngược lại

Từ (1) và (2) suy ra :

DM = MN =NB (đpcm)

 

1 tháng 12 2021

hơi dài

27 tháng 8 2021

AECF là hình bình hành => EN // AM

E là trung điểm của AB => N là trung điểm của BM, do đó MN = NB.

Tương tự, M là trung điểm của DN, do đó DM = MN.

Vậy →DM=→MN=→NB