K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

Dựng BG ⊥ AC.

Xét ΔBGA và ΔCEA, ta có:

∠ (BGA) =  ∠ (CEA) =  90 0

∠ A chung

BGA đồng dạng CEA(g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

AB.AE = AC.AG (1)

Xét  △ BGC và  △ CFA, ta có:

∠ (BGC) =  ∠ (CFA) = 90 0

∠ (BCG) =  ∠ (CAF) (so le trong vì AD //BC)

△ BGC đồng dạng △ CFA (g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ⇒ BC.AF = AC.CG

Mà BC = AD (tính chất hình bình hành)

Suy ra: AD.AF = AC.CG (2)

Cộng từng vế đẳng thức (1) và (2) ta có:

AB.AE + AD.AF = AC.AG + AC.CG

AB.AE + AD.AF= AC(AG + CG)

Mà AG + CG = AC nên AB.AE + AD.AF =  A C 2

11 tháng 6 2021

 a, Xét ΔAHD và ΔAFC có:

      ˆAHDˆAFC=90 độ

      ˆA chung

ΔAHD và ΔAFC đồng dạng (g,g)

AH/AF=AD/AC=AD/AC⇒AD.AF=AC.AH

b,

Từ B kẻ BK⊥AC

Chứng minh tương tự như trên ta có:

AB.AE=AK.AC

 Mà AK=HC (tam giác ABK và tam giác CDH bằng nhau)

⇒AD.AF+AB.AE=AC.AH+AK.AC=AC(AH+AK)=AC(AH+HC)=AC.AC=AC^2

1 tháng 12 2021

\(a,\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\\ \Rightarrow AFHE\text{ là hcn}\\ b,AFHE\text{ là hcn }\Rightarrow AE=HF=FM;AE\text{//}HF\Rightarrow AE\text{//}FM\\ \text{Vậy }AMFE\text{ là hbh}\\ \text{Theo tc đối xứng: }AC\perp HM\text{ tại }F\text{ và }F\text{ là trung điểm }HM\\ \text{Vậy }\Delta CHM\text{ cân tại }C\)

\(c,AFHE\text{ là hcn }\Rightarrow AF=HE=EN;AF\text{//}HE\Rightarrow AF\text{//}EN\\ \text{Vậy }AFEN\text{ là hbh}\\ \Rightarrow AN\text{//}EF\\ \text{Mà }AMFE\text{ là hbh }\Rightarrow AM\text{//}EF\\ \text{Vậy }AM\text{ trùng }AN\text{ hay }A,M,N\text{ thẳng hàng}\)

29 tháng 4 2018

Từ  D  kẻ  DH  vuông góc với AC   (H thuộc AC)

Xét  \(\Delta AHD\)và   \(\Delta AFC\:\)có:

    \(\widehat{AHD}=\widehat{AFC\:}=90^0\)

    \(\widehat{HAD}\) chung

suy ra:    \(\Delta AHD~\Delta AFC\:\)

\(\Rightarrow\)\(\frac{AH}{AF}=\frac{AD}{AC}\)

\(\Rightarrow\)\(AD.AF=AH.AC\)  (1)

Xét  \(\Delta AEC\) và     \(\Delta CHD\)  có:

\(\widehat{AEC}=\widehat{CHD}=90^0\)

\(\widehat{EAC}=\widehat{HCD}\) (slt do ABCD là hình bình hành nên AB//CD)

suy ra:   \(\Delta AEC~\Delta CHD\)

\(\Rightarrow\)\(\frac{AE}{CH}=\frac{AC}{CD}\)

\(\Rightarrow\)\(AE.CD=CH.AC\)

mà  \(CD=AB\) (do ABCD là hình bình hành)

\(\Rightarrow\)\(AB.AE=CH.AC\)

Lấy (1) + (2) theo vế ta được:

   \(AD.AF+AB.AE=AH.AC+HC.AC=AC^2\) (đpcm)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Dựng BG ⊥ AC.

Xét ΔBGA và ΔCEA, ta có:

∠ (BGA) =  ∠ (CEA) =  90 0

∠ A chung

 △ BGA đồng dạng  △ CEA(g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

AB.AE = AC.AG (1)

Xét  △ BGC và  △ CFA, ta có:

∠ (BGC) =  ∠ (CFA) = 90 0

∠ (BCG) =  ∠ (CAF) (so le trong vì AD //BC)

△ BGC đồng dạng △ CFA (g.g)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ⇒ BC.AF = AC.CG

Mà BC = AD (tính chất hình bình hành)

Suy ra: AD.AF = AC.CG (2)

Cộng từng vế đẳng thức (1) và (2) ta có:

AB.AE + AD.AF = AC.AG + AC.CG

25 tháng 2 2019

Câu hỏi của Nguyễn Đình Kim Thanh - Toán lớp 8 - Học toán với OnlineMath

Em xem link bài làm nhé!

18 tháng 11 2023

1: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>AH=DE

2: \(\widehat{EDM}=90^0\)

=>\(\widehat{EDH}+\widehat{MDH}=90^0\)

=>\(\widehat{EAH}+\widehat{MDH}=90^0\)

=>\(\widehat{MDH}+\widehat{HAC}=90^0\)

=>\(\widehat{MDH}+\widehat{ABC}=90^0\)

mà \(\widehat{MHD}+\widehat{MBD}=90^0\)

nên \(\widehat{MDH}=\widehat{MHD}\)

=>MD=MH

\(\widehat{MDH}+\widehat{MDB}=\widehat{HDB}=90^0\)

\(\widehat{MHD}+\widehat{MBD}=90^0\)(ΔHDB vuông tại D)

mà \(\widehat{MDH}=\widehat{MHD}\)

nên \(\widehat{MDB}=\widehat{MBD}\)

=>MD=MB

=>MB=MH

=>M là trung điểm của BH

\(\widehat{NED}=90^0\)

=>\(\widehat{NEH}+\widehat{DEH}=90^0\)

=>\(\widehat{NEH}+\widehat{DAH}=90^0\)

mà \(\widehat{DAH}=\widehat{C}\left(=90^0-\widehat{ABC}\right)\)

nên \(\widehat{NEH}+\widehat{C}=90^0\)

mà \(\widehat{NHE}+\widehat{C}=90^0\)(ΔHEC vuông tại E)

nên \(\widehat{NEH}=\widehat{NHE}\)

=>NE=NH

\(\widehat{NEH}+\widehat{NEC}=\widehat{CEH}=90^0\)

\(\widehat{NHE}+\widehat{NCE}=90^0\)(ΔCEH vuông tại E)

mà \(\widehat{NHE}=\widehat{NEH}\)

nên \(\widehat{NEC}=\widehat{NCE}\)

=>NE=NC

mà NH=NE

nên NC=NH

=>N là trung điểm của HC