K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 3 2019

Lời giải:

Áp dụng định lý Pitago và các tính chất của hình bình hành như $AB=CD; AD=BC$ ta có:

\(AC^2=AF^2+FC^2=AF^2+DC^2-DF^2=(AF-DF)(AF+DF)+DC^2\)

\(=AD(AF+DF)+AB^2\)

\(=AD.AF+AD.DF+AB(AE-BE)\)

\(=(AD.AF+AB.AE)+(AD.DF-AB.BE)\)

\(=(AD.AF+AB.AE)+(BC.DF-CD.BE)(*)\)

Xét tam giác $CBE$ và $CDF$ có:

\(\widehat{CEB}=\widehat{CFD}=90^0\)

\(\widehat{CBE}=180^0-\widehat{ABC}=180^0-\widehat{ADC}=\widehat{CDF}\)

\(\Rightarrow \triangle CBE\sim \triangle CDF(g.g)\Rightarrow \frac{CB}{CD}=\frac{BE}{DF}\)

\(\Rightarrow BC.DF=BE.CD\Rightarrow BC.DF-CD.BE=0(**)\)

Từ \((*); (**)\Rightarrow AC^2=AD.AF+AB.AE\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
15 tháng 3 2019

Hình vẽ:

Violympic toán 8

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0
5 tháng 1 2020

A B C D H K I E F d M

Qua B và D kẻ hai đường thẳng song song với đường thẳng D và cắt  AC tại H và K.

Gọi giao điểm 2 đường chéo của hình bình hành ABCD.

Áp dụng định lí Ta-lét, ta có các tỉ số :

\(\frac{AB}{AE}=\frac{AH}{AM}\)\(\frac{AD}{AF}=\frac{AK}{AM}\)

\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{AH}{AM}+\frac{AK}{AM}=\frac{AH+AK}{AM}=\frac{2AK+IH+IK}{AM}\)(1)

Ta có : \(\Delta BHI=\Delta DKI\left(gcg\right)\)

\(\Rightarrow IH=IK\)

Thay vào (1) ta được :

\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{2AK+2IK}{AM}=\frac{2\left(AK+IK\right)}{AM}=\frac{2AI}{AM}\)

Mà \(AI=\frac{1}{2}AC\Rightarrow2AC=AI\)

\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AM}\)(Đpcm)