K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

Đáp án C

Trên Ax lấy điểm A’ sao cho AA’= x

Trên By lấy điểm B’ sao cho BB’ = y

Trên Cz lấy điểm C’ sao cho CC’ = z

Gọi  α  là mặt phẳng chứa tia Cz và Dt

Xét (A’B’C’) và  α  có:

C’ là điểm chung

A’B’ //  α

⇒ giao tuyến của α  và (A’B’D’) là đường thẳng d đi qua C’ và song song với A’B’

Trong mặt phẳng α , ta có: d cắt Dt tại D’

 Gọi  O = A C ∩ B D , O ' = A C ' ∩ B ' D '

Xét hình thang AA’C’C có: OO’ là đường trung bình

  ⇒ O O ' = A A ' + C C ' 2 = x + z 2

Xét tam giác BDD’D có: OO’ là đường trung bình

⇒ O O ' = D D ' + B B ' 2 ⇒ DD’ = x + z – y

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

6 tháng 6 2017

A B C D A' B' C' D' I J
a) Có AA' // DD' và AB//DC nên \(\left(Ax,By\right)\) // \(\left(C_z,D_t\right)\).
b) Do \(\left(Ax,By\right)\) // \(\left(C_z,D_t\right)\)\(\left(\beta\right)\cap\left(AA'B'B\right)=A'B'\)\(\left(\beta\right)\cap\left(CC'D'D\right)=C'D'\) nên \(A'B'\) // \(C'D'\).
Chứng minh tương tự B'C'//D'A'.
Do đó tứ giác A'B'C'D' là hình bình hành và J là trung điểm của A'C'.
Suy ra: IJ là đường trung bình của hình thang A'C'CA nên IJ // AA'.
c) Tương tự IJ là đường trung bình của hình thang B'D'DB \(IJ=\dfrac{\left(B'B+DD'\right)}{2}\).
Theo câu b IJ là đường trung bình của hình thang A'C'CA nên \(IJ=\dfrac{\left(AA'+CC'\right)}{2}\).
Suy ra: \(BB'+DD'=AA'+CC'\) hay \(DD'=a+c-b\).

10 tháng 6 2019

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) Do ABCD là hình bình hành, nên AB // DC

=> AB // (Cz, Dt) (1)

Theo giả thiết Ax // Dt nên Ax // (Cz, Dt) (2)

Từ (1) và (2) suy ra: (Ax, By) // (Cz, Dt)

b) Mặt phẳng β cắt 2 mặt phẳng song song ( Ax, By), (Cz, Dt) theo hai giao tuyến là A’B’và C’D’ nên A’B’// C’D’. (3)

Chứng minh tương tự (Ax, Dt) song song với (By,Cz).Và mặt phẳng β cắt 2 mặt phẳng song song (Ax, Dt), (By, Cz) theo hai giao tuyến là A’D’và B’C’ nên A’D’// B’C’ (4)

Từ (3) và (4) suy ra: tứ giác A’B’C’D’ là hình bình hành.

=> J là trung điểm của A’C’ ( tính chất hình bình hành).

Tứ giác AA’C’C là hình thang vì có: AA’ // CC’ ( giả thiết). Lại có, I và J lần lượt là trung điểm của AC và A’C’ nên IJ là đường trung bình của hình thang

=> IJ// AA’// CC’ ( đpcm).

c) Vì IJ là đường trung bình của hình thang ACC’A’ nên IJ = 1/2(AA’ + CC’)

IJ cũng là đường trung bình của hình thang BDD’B’: IJ = 1/2(BB’ + DD’)

Từ đây suy ra: DD’ + BB’ = AA’ + CC’

=> DD’ = AA’ + CC’ – BB’ = a + c – b

20 tháng 6 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ Ax // (Cz,Dt)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ Ax, AB ⊂ (Ax,By) suy ra (Ax, By) // (Cz, Dt)

Tương tự ta có (Ax, Dt) // (By,Cz)

b)

Giải sách bài tập Toán 11 | Giải sbt Toán 11 Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (1) và (2) suy ra tứ giác A’B’C’D’ là hình bình hành.

c) Gọi O, O’ lần lượt là tâm các hình bình hành ABCD, A’B’C’D’. Dễ thấy OO’ là đường trung bình của hình thang AA’, suy ra Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tương tự ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

6 tháng 3 2017

1. sa vg cd. cd vg ac. ac giao sa=a => cd vg (sac)

10 tháng 11 2019

Đáp án D

Trên Bx lấy điểm B’ sao cho BB’ = 4

Trên Dz lấy điểm D’ sao cho DD’ = 2

Gọi  α  là mặt phẳng chứa tia Bx và Dz

Xét (AB’D’) và  α có:

B’ là điểm chung

AD’ //  α

⇒ giao tuyến của α và (AB’D’) là đường thẳng d đi qua B’ và song song với AD’

Trong mặt phẳng α , ta có: d cắt Cz tại C’

 Gọi  O = A C ∩ B D , O ' = A C ' ∩ B ' D '

Xét hình thang BB’D’D có: OO’ là đường trung bình

Xét tam giác ACC’ có: OO’ là đường trung bình

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

31 tháng 3 2017

a) Gọi O = AC ∩ BD; O' là trung điểm A'C' thì OO' // AA'

=> OO'// d // b mà O BD mp (b;d)

=> OO' mp(b;d). Trong mp (b;d) ( mặt phẳng xác định bởi hai đường thẳng song song); d ∩ B'O' = D' là điểm cần tìm

b) Chứng minh mp(a;d) // mp( b;c) , mặt phẳng thứ 3 (A'B'C'D') cắt hai mặt phẳng trên theo hai giao tuyến song song : A'D' // B'C'. Chứng minh tương tự được A'B' // D'C'. Từ đó suy ra A'B'C'D' là hình bình hành