K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

a) xét tg AECF có :  AF//EC   (vì AB//CD, tgABCD là hbh)

                              và AE//CF ( cùng ^ vsBD)

                        => tgAECF là hbh

b)xét  tg AMD và tg CNB  có:

    AD=BC (tgABCD là hbh)

AMD =CNB =90

   ADM =CBN (AD//BC)

   =>tg AMD =tg CNB (ch-gn)

    =>AM=CN      (2 cạnh t/ư )                   

xét tg AMCN có:   AM//CN  (do cùng ^ BD) và AM =CN   (cmt)

        ==>tg AMCN là hbh

a: AE\(\perp\)BD

CF\(\perp\)BD

Do đó: AE//CF

Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

=>AE=CF

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: AE//CF

E\(\in\)AH

F\(\in\)CK

Do đó: AH//CK

AB//CD

K\(\in\)AB

H\(\in\)CD

Do đó: AK//CH

Xét tứ giác AHCK có

AH//CK

AK//CH

Do đó: AHCK là hình bình hành

=>AC cắt HK tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,HK,BD đồng quy

24 tháng 3 2021

A B C D M N F E

a, AB=CD(các cạnh đối bằng nhau theo từng đôi)

Mà M,N lần lượt là trung điểm AB, CD=> AM=BM=CN=DN

=>AM=CN

Vì AM=CN và AM//CN(AB//CD)=> AMCN là hình bình hành.

b, AMCN là hình bình hành=>AN//MC=>AE//MF

Tam giác ABE có: AE//MF và MA=MB=> EF=FB(tính chất đường trung bình) (1) => F là trung điểm BE.

c, AN//MC=>EN//FC

Tam giác DFC có: EN//FC và ND=NC=> DE=EF(tính chất đường trung bình) (2)

Từ (1) và (2)=>DE=EF=FB.

Dành cho những học siinh không làm được bài mò vào xem nè! Còn đúng hay sai mình không đảm bảo nha!!!

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

23 tháng 10 2018

A B C D O M N E F

a) Ta có:

+) M là trung điểm OD

\(\Rightarrow MD=MO=\frac{1}{2}OD\)

N là trung điểm OB

\(\Rightarrow NB=NO=\frac{1}{2}OB\)

Mà OD=OB ( O là giao điểm 2 đường chéo của hình bình hành ABCD)

Suy ra ON=OM=NB=MD (1)

Ta lại có OA=OC

Tứ giác AMCN có hai đường chéo cắt nhau tại trung điểm mỗi đường nên là hình bình hành

b) AMCN là hình bình hành =>NC//AM=> FC//AE mà AF//EC

Vậy suy ra AFCE là hình bình hành

O là trung điểm AC => O là trung điểm EF=> E đối xứng với F qua O

c) AC, BD, EF đều qua O nên đồng quy

d) Xét tam giác DNC có NC//ME

\(\Rightarrow\frac{DE}{EC}=\frac{DM}{MN}\)

Mà DM=OM=ON ( theo 1)

=> \(DM=\frac{1}{2}MN\)

=>\(\frac{DE}{EC}=\frac{DM}{MN}=\frac{1}{2}\Rightarrow DE=\frac{1}{2}EC\)

e) Để hình bình hành AMCN là hình chữ nhật thì MN=AC 

Mà \(MN=\frac{1}{2}BD\)nên \(AC=\frac{1}{2}BD\)

Vậy ABCD cần điều kiện là \(AC=\frac{1}{2}BD\)thì AMCN là hình chữ nhật