Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Suy ra:AN//CM
a) Vì \(AH\), \(CK\) vuông góc với \(BD\) (gt)
Suy ra \(AH\) // \(CK\)
Vì \(ABCD\) là hình bình hành (gt)
Suy ra \(AD = BC\); \(AD\) // \(BC\)
Xét \(\Delta ADH\) và \(\Delta CBK\) ta có:
\(\widehat {{\rm{AHD}}} = \widehat {{\rm{CKB}}} = 90^\circ \) (gt)
\(AD = BC\) (cmt)
\(\widehat {{\rm{ADH}}} = \widehat {{\rm{CBK}}}\) (do \(AD\) // \(BC\))
Suy ra \(\Delta ADH = \Delta CBK\) (ch-gn)
Suy ra \(AH = CK\) (hai cạnh tương ứng)
Mà \(AH\) // \(CK\) (cmt)
Suy ra \(AHCK\) là hình bình hành
b) Vì \(AHCK\) là hình bình hành nên hai đường chéo \(HK\) và \(AC\) cắt nhau tại trung điểm.
Mà \(I\) là trung điểm của \(HK\).
Suy ra \(I\) là trung điểm của \(AC\).
Ta lại có \(ABCD\) là hình bình hành nên hai đường chéo \(AC\) và \(BD\) cắt nhau tại trung điểm.
Suy ra \(I\) là trung điểm của \(BD\) hay \( IB = ID\)
CM: a) Xét t/giác AHD và t/giác CKB
có: AD = BC (Vì ABCD là HBH)
\(\widehat{AHD}=\widehat{CKB}=90^0\)(gt)
\(\widehat{ADH}=\widehat{KBC}\)(slt của AD // BC)
=? t/giác AHD = t/giác CKB (ch - gn)
=> AH = CK (2 cạnh t/ứng)
b) Xét tứ giác AHCK có AH // CK (Vì cùng vuông góc với BD)
AH = CK (cmt)
=> AHCK là HBH
c) Xét t/giác ADH và t/giác BDM
có: \(\widehat{MDB}\):chung
\(\widehat{AHD}=\widehat{M}=90^0\) (gt)
=> t/giác ADH đồng dạng t/giác BDM (g.g)
=> \(\frac{AD}{BD}=\frac{DH}{DM}\) => AD.DM = BD.DH (1)
Xét t/giác DCK và t/giác DBN
có \(\widehat{BDN}\):chung
\(\widehat{DKC}=\widehat{N}=90^0\)(gt)
=> t/giác DCK đồng dạng t/giác DBN
=> \(\frac{DC}{DB}=\frac{DK}{DN}\)=> DC. DN = DB.DK (2)
Từ (1) và (2) công vế theo vế, ta được:
DA.DM + DC.DN = BD. DH + DB.DK = BD(DH + DK)
vì DH = BK (vì t/giác ADH = t/giác CBK)
=> DA.DM + DC.DN = BD. (BK + DK) = BD2
Bài 3:
a: Ta có: AD+DB=AB
AE+EC=AC
mà DB=EC và AB=AC
nên AD=AE
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
Hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)
nên BDEC là hình thang cân
b: Để BD=DE=EC thì BD=DE và DE=EC
BD=DE thì ΔDBE cân tại D
=>\(\widehat{DBE}=\widehat{DEB}\)
mà \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong, DE//BC)
nên \(\widehat{DBE}=\widehat{EBC}\)
=>\(\widehat{ABE}=\widehat{EBC}\)
=>BE là phân giác của góc ABC
=>E là chân đường phân giác kẻ từ B xuống AC
Xét ΔEDC có ED=EC
nên ΔEDC cân tại E
=>\(\widehat{EDC}=\widehat{ECD}\)
mà \(\widehat{EDC}=\widehat{DCB}\)(hai góc so le trong, DE//BC)
nên \(\widehat{ECD}=\widehat{DCB}\)
=>\(\widehat{ACD}=\widehat{BCD}\)
=>CD là phân giác của góc ACB
=>D là chân đường phân giác từ C kẻ xuống AB
Bài 2:
a: Ta có: ABCD là hình bình hành
=>AB//CD và AB=CD(1)
Ta có: M là trung điểm của AB
=>\(AM=MB=\dfrac{AB}{2}\left(2\right)\)
Ta có: N là trung điểm của CD
=>\(NC=ND=\dfrac{CD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra AM=MB=NC=ND
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: Ta có AMCN là hình bình hành
=>AN//CM
Xét ΔDFC có
N là trung điểm của DC
NE//FC
Do đó: E là trung điểm của DF
=>DE=EF(4)
Xét ΔABE có
M là trung điểm của BA
MF//AE
Do đó: F là trung điểm của BE
=>BF=FE(5)
Từ (4) và (5) suy ra BF=FE=ED
Lời giải:
Vì $ABCD$ là hình bình hành nên $AO=OC$
Xét tam giác $AHO$ và $CKO$ có:
$\widehat{AHO}=\widehat{CKO}=90^0$
$\widehat{AOH}=\widehat{COK}$ (đối đỉnh)
$AO=CO$
$\Rightarrow \triangle AHO=\triangle CKO$ (ch-gn)
$\Rightarrow AH=CK$
Tứ giác $AHCK$ có 2 cạnh đối $AH, CK$ song song (do cùng vg với $BD$) và bằng nhau nên $AHCK$ là hbh.
a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
góc ADH=góc CBK
=>ΔAHD=ΔCKB
=>AH=CK
mà AH//CK
nên AHCK là hình bình hành
b: AHCK là hbh
=>AC cắt HK tại trung điểm của mỗi đường
=>A,O,C thẳng hàng
a: Xét ΔAID vuông tại I và ΔCKB vuông tại K có
AD=CB
\(\widehat{D}=\widehat{B}\)
Do đó: ΔAID=ΔCKB
Suy ra: AI=CK
Xét tứ giác AICK có
AI//CK
AI=CK
Do đó: AICK là hình bình hành
mà \(\widehat{AIC}=90^0\)
nên AICK là hình chữ nhật
Ta chứng minh AH//CK, AH = CK (DAHD = DCKB) Þ AHCK là hình bình hành (cặp cạnh đối song song và bằng nhau)
theo a, vì tứ giác AHCK là hbh => AK//CH hay AM//CN
Mà AD// BC hay AN//CM
=>tứ giác AMCN là hbh
=> AN=CM