K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 10 2020

\(\overrightarrow{BM}=\overrightarrow{BC}-2\overrightarrow{AB}\Leftrightarrow\overrightarrow{BI}+\overrightarrow{IM}=\overrightarrow{BC}-2\left(\overrightarrow{AC}+\overrightarrow{CB}\right)\)

\(\Leftrightarrow\frac{1}{2}\overrightarrow{BC}+\overrightarrow{IM}=\overrightarrow{BC}-2\overrightarrow{AC}+2\overrightarrow{BC}\Rightarrow\overrightarrow{IM}=\frac{5}{2}\overrightarrow{BC}-2\overrightarrow{AC}\)

\(\overrightarrow{CI}+\overrightarrow{IN}=x\overrightarrow{AC}-\overrightarrow{BC}\Rightarrow-\frac{1}{2}\overrightarrow{BC}+\overrightarrow{IN}=x\overrightarrow{AC}-\overrightarrow{BC}\)

\(\Rightarrow\overrightarrow{IN}=-\frac{1}{2}\overrightarrow{BC}+x\overrightarrow{AC}=-\frac{1}{5}\left(\frac{5}{2}\overrightarrow{BC}-5x.\overrightarrow{AC}\right)\)

Để MN qua I hay I;M;N thẳng hàng \(\Leftrightarrow5x=2\Rightarrow x=\frac{2}{5}\)

1.Bất pt \(4x^2+\frac{1}{x^2}+\left|\frac{2x^2-1}{x}\right|-6\le0\)có tập nghiệm là \(\left[a;b\right]\cup\left[c;d\right]\) (với a,b,c,d thuộc R). Khi đó toogr S=a+b+c+d có giá trị A.\(\frac{-3}{2}\) B.\(\frac{3}{2}\) C.0 D.2 2.Có bao nhiêu điểm M trên đường tròn lượng giác gốc A thỏa mãn \(sđ\stackrel\frown{AM}=-\frac{\pi}{7}+\frac{k\pi}{3}\left(k\in Z\right)\) a.5 b.6 c.3 d.4 3.Đường tròn (C) đi qua 2 điểm P(-1;2),Q(-2;3) và có tâm...
Đọc tiếp

1.Bất pt \(4x^2+\frac{1}{x^2}+\left|\frac{2x^2-1}{x}\right|-6\le0\)có tập nghiệm là \(\left[a;b\right]\cup\left[c;d\right]\) (với a,b,c,d thuộc R). Khi đó toogr S=a+b+c+d có giá trị

A.\(\frac{-3}{2}\)

B.\(\frac{3}{2}\)

C.0

D.2

2.Có bao nhiêu điểm M trên đường tròn lượng giác gốc A thỏa mãn \(sđ\stackrel\frown{AM}=-\frac{\pi}{7}+\frac{k\pi}{3}\left(k\in Z\right)\)

a.5

b.6

c.3

d.4

3.Đường tròn (C) đi qua 2 điểm P(-1;2),Q(-2;3) và có tâm nằm trên đường thẳng \(\left\{{}\begin{matrix}x=-1+t\\y=7+3t\end{matrix}\right.\) có bán kính

a.5

b.\(\sqrt{5}\)

c.25

d.\(\sqrt{10}\)

4.Cho đường tròn (C):(x-2)2 +(y-1)2 =5 và đường thẳn d:x-y-4=0.Gọi I là tâm của (C), M là điểm thuộc d.Qua M kẻ tiếp tuyến MA,MB đến (C) (A,B là các tiếp điểm) .Biết điểm M(a;b) và tứ giác IAMB có diện tích là ).Khi đó b-a bằng

a.4

b.1

c.-2

d.-4

0
1, Câu nào sau đây không phải là mệnh đề A. 3+2=7 B. \(^{x^2}\)+1<0 C. 2-\(\sqrt{5}\) <0 D. 4+x=3 2, Mệnh đề "∃x ∈ R, \(^{x^2}\)=3" khẳng định rằng: a. Bình phương của mỗi số thực bằng 3 B. Có ít nhất 1 số thực có bình phương bằng 3 C. Chỉ có 1 số thực có bình phương bằng 3 D. Nếu x là số thực thì \(x^2\)=3 3, Mệnh đề nào sau đây là mệnh đề đúng? A....
Đọc tiếp

1, Câu nào sau đây không phải là mệnh đề

A. 3+2=7 B. \(^{x^2}\)+1<0 C. 2-\(\sqrt{5}\) <0 D. 4+x=3

2, Mệnh đề "∃x ∈ R, \(^{x^2}\)=3" khẳng định rằng:

a. Bình phương của mỗi số thực bằng 3

B. Có ít nhất 1 số thực có bình phương bằng 3

C. Chỉ có 1 số thực có bình phương bằng 3

D. Nếu x là số thực thì \(x^2\)=3

3, Mệnh đề nào sau đây là mệnh đề đúng?

A. {a;b}⊂(a;b) B. {a}⊂[a;b] C. a∉[a;b) D.a∈(a;b]

4. Biết \(\sqrt{8}\)≃ 2,828427125. Giá trị gần đúng của \(\sqrt{8}\) chính xác đến hàng phần trăm là:

A. 2,829 B. 2,828 C. 2.82 D. 2,83

5, Cho mệnh đề A: "∀x ∈ R, \(x^2\)-x+7<0". Mệnh đề phủ định của A là:

A. ∀x ϵ R, \(x^2\)-x+7>0 B. ∀x ∈ R, \(x^2\)-x+7≥0

C. ∃x∈ R, \(x^2\)-x+7>0 D. ∃x ∈R, \(x^2\)-x+7≥0

6, Với giá trị nào của k thì hàm số y=(k-1)x+k-2 nghịch biến trên tập xác định của nó?

A. k<1 B. k>1 C. k<2 D. k>2

7, Cho △ABC đều, cạnh a. Mệnh đề nào sau đây đúng?

A. \(\overrightarrow{AB}=\overrightarrow{BC}=\overrightarrow{CA}\) B. \(\overrightarrow{CA}=-\overrightarrow{AB}\)

C. \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{BC}\right|=\left|\overrightarrow{CA}\right|=a\) D. \(\overrightarrow{CA}=-\overrightarrow{BC}\)

8, Trong hệ trục (O; \(\overrightarrow{i},\overrightarrow{j}\)), tọa độ của \(\overrightarrow{i}+\overrightarrow{j}\) là:

A. (0;1) B. (-1;1) C. (1;0) D. (1;1)

9, Tập xác định của hàm số \(y=\sqrt{2-x}+\sqrt{7+x}\) là:

A. (-7;2) B. [2;\(+\infty\)) C. [-7;2] D. R \ { -7;2}

10, Cho A(2;1), B(0;-3), C(3;1). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành là:

A. (5;5) B. (5;-2) C. (5;-4) D. (-1;-4)

11, Cho hàm số f(x) đồng biến trên khoảng (a;b), hàm số g(x) nghịch biến trên khoảng (a;b). Có thể kết luận gì về chiều biến thiên của hàm số y=f(x)-g(x) trên khoảng (a;b)?

A. Đồng biến B. Nghịch biến C. Không đổi D. Không kết luận được

12, Cho △ABC và một điểm M thỏa mãn điều kiện \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\). Trong các mệnh đề sau mệnh đề nào là mệnh đề sai?

A. MABC là hình bình hành B. \(\overrightarrow{AM}+\overrightarrow{AB}=\overrightarrow{AC}\) C. \(\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{BM}\) D. \(\overrightarrow{MA}=\overrightarrow{BC}\)

13, a) Viết tập hợp C gồm các nghiệm của phương trình \(x^2\)-5x+6=0 bằng cách chỉ ra các tính chất đặc trưng của nó. Liệt kê các phần tử của C.

b) Cho hai tập hợp A=(-1;3). B[1;4). Tìm A\(\cup\)B, A\(\cap\)B.

14, Cho hàm số \(y=mx^2+x-3\) (1)

a) Tìm các giá trị của m để đồ thị hàm số (1) là một Parabol

b) Tìm m để đồ thị hàm số (1) là một Parabol nhận đường thẳng d: x=1 làm trục đối xứng

15, a) Giả hệ phương trình \(\left\{{}\begin{matrix}2x+3y=5\\3x+2y=5\end{matrix}\right.\)

b) Giải phương trình \(\sqrt{x^2+3}=x+1\)

16, Cho hình bình hành ABCD

a) Chứng minh rằng \(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=2\overrightarrow{AC}\)

b) Xác định điểm M để \(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\)

17, Cho △ABC thỏa mãn \(2AB^2-3AC^2-5\overrightarrow{AB}.\overrightarrow{AC}=0.\) Các điểm M, N được xác định bởi \(\overrightarrow{MC}=-2\overrightarrow{MB}\), \(\overrightarrow{NB}=-2\overrightarrow{NA.}\) Chứng minh: AM vuông góc CN

0
Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn...
Đọc tiếp

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng

Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng

Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng

Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)

0
Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1. Chứng minh rằng: \(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\) ≥ \(3\sqrt{3}\) Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR: 1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\) ≥ \(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\) 2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+...
Đọc tiếp

Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1.

Chứng minh rằng:

\(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\)\(3\sqrt{3}\)

Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR:

1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\)\(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\)

2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+ \(\dfrac{d^5a^4}{b^{13}}\)\(\dfrac{ab^2}{c^3}+\dfrac{bc^2}{d^3}+\dfrac{cd^2}{a^3}\)+ \(\dfrac{da^2}{b^3}\)

Bài 3: Cho a, b,c ,d > 0. CMR:

\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{d^5}+\dfrac{d^2}{a^5}\)\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{1}{d^3}\)

Bài 4: tìm giá trị nhỏ nhất của biểu thức:

A= x + y biết x, y > 0 thỏa mãn \(\dfrac{2}{x}+\dfrac{3}{y}\) = 1

B= \(\dfrac{ab}{a^2+b^2}\) + \(\dfrac{a^2+b^2}{ab}\) với a, b > 0

Bài 5: Với x > 0, chứng minh rằng:

( x+2 )2 + \(\dfrac{2}{x+2}\) ≥ 3

Giúp mk với, mai mk phải kiểm tra rồi!!

4
AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Câu 1:

Áp dụng BĐT Cauchy:

\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)

\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Hoàn toàn tương tự:

\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)

Cộng theo vế các BĐT thu được:

\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Câu 4:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)

\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)

Vậy \(A_{\min}=5+2\sqrt{6}\)

Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)

------------------------------

Áp dụng BĐT Cauchy:

\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)

\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)

Cộng theo vế hai BĐT trên:

\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$

Bài 1 :Cho parabol (P) : y = 2x + 4x parabol có đỉnh là : A/ I(1;1) B/ I (- 1;1) C/ I ( -1;2) D/ I ( 1;- 1) Bài 2: Cho hàm số y= x-4 x + 4 a. Hàm số đồng biến trên (-∞;2) và nghịch biến trên (2;+∞) b. Hàm số đồng biến trên (0;+∞) và nghịch biến trên(-∞;0) c. Hàm số nghịch biến trên(-∞;2) và đồng biến (2;+∞) Số phát biểu đúng là: A. 0 B.1 C. 2 D.3 Bài 3: Cho hàm số y = \(\frac{1}{2}\)x- 2x -1 trong các điểm...
Đọc tiếp

Bài 1 :Cho parabol (P) : y = 2x + 4x parabol có đỉnh là :

A/ I(1;1)

B/ I (- 1;1)

C/ I ( -1;2)

D/ I ( 1;- 1)

Bài 2: Cho hàm số y= x-4 x + 4

a. Hàm số đồng biến trên (-∞;2) và nghịch biến trên (2;+∞)

b. Hàm số đồng biến trên (0;+∞) và nghịch biến trên(-∞;0)

c. Hàm số nghịch biến trên(-∞;2) và đồng biến (2;+∞)

Số phát biểu đúng là:

A. 0

B.1

C. 2

D.3

Bài 3: Cho hàm số y = \(\frac{1}{2}\)x- 2x -1 trong các điểm sau đây Điểm nào thuộc hàm số

A.M (2;3)

B. M (0;-1)

C. M (12;-12)

D. M (1;0)

Bài 4: trục đối xứng của (P): y= x+5x-1

A. X=5

B. X= \(-\frac{5}{2}\)

C. X=\(\frac{5}{2}\)

D. X=-5

Bài 5: giao điểm của (P): y= \(\frac{1}{2}x^2\)-21x-11 với trục tung là:

A. M( 0;2+\(\sqrt{2}\))

B. M(0;-11)

C. M(1;0)

D. M(\(2+\sqrt{2}\);0)

Bài 6: hàm số nào sau đây không phải đường thẳng

A. Y=3x-4

B. Y=5

C. Y= \(\sqrt{2}\) -1

D. Y=(x+1)(x-1)

Bài 7: giao điểm của (P): y=x +5x với trục hoành

A. (-2;3)

B. (0;0)và(-5;0)

C. (-5;0)

D. (0;0)và(0;-5)


0
1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10 A.4 B.5 C.9 D.10 2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\) A. 5 B.6 C.21 D.40 3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ 4. Tập...
Đọc tiếp

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10

A.4 B.5 C.9 D.10

2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\)

A. 5 B.6 C.21 D.40

3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x

A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ

4. Tập nghiệm S của bất phương trình x+\(\sqrt{x}< \left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)

A. (-∞;3) B. (3; +∞) C. [3; +∞) D. (-∞; 3]

5. tổng các nghiệm nguyên của bất phương trình \(\frac{x-2}{\sqrt{x-4}}\le\frac{4}{\sqrt{x-4}}\) bằng

A. 15 B. 26 C. 11 D. 0

6. bất phương trình (m2- 3m )x + m < 2- 2x vô nghiệm khi

A. m ≠1 B. m≠2 C. m=1 , m=2 D. m∈ R

7. có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 -m )x < m vô nghiệm

A. 0 B.1 C.2 D. vô số

8. gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2 -m)x + m< 6x -2 vô nghiệm. tổng các phần tử trong S là

A. 0 B.1 C.2 D.3

9. tìm tất cả các giá trị thực của tham số m để bất phương trình m2( x-2) -mx +x+5 < 0 nghiệm đúng với mọi x∈ [-2018; 2]

A. m< \(\frac{7}{2}\) B. m=​ \(\frac{7}{2}\) C. m > \(\frac{7}{2}\) D. m ∈ R

10. tìm tất cả các giá trị thực của tham số m để bất phương trình m2 (x-2) +m+x ≥ 0 có nghiệm x ∈ [-1;2]

A. m≥ -2 B. m= -2 C. m ≥ -1 D. m ≤ -2

0