K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và MN=AC/2(1)

Xét ΔADC có 

Q là trung điểm của AD

P là trung điểm của CD

Do đó: QP là đường trung bình của ΔADC

Suy ra: QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

16 tháng 12 2020

 

AB=CD,ˆBAM=ˆNCD,AB=CD→ΔAMB=ΔCND(c.g.c)→MB=DNAB=CD,BAM^=NCD^,AB=CD→ΔAMB=ΔCND(c.g.c)→MB=DN 

→ˆAMB=ˆDNC→ˆBMN=ˆDNM→BM//DN→◊BNDM→AMB^=DNC^→BMN^=DNM^→BM//DN→◊BNDM là hình bình hành

b.Để ◊BNDM◊BNDM là hình thoi

→MN⊥BD→AC⊥BD→◊ABCD→MN⊥BD→AC⊥BD→◊ABCD là hình thoi

c.Để K là trung điểm AD →AK=KD→AK=KD mà KM//DN→MKM//DN→M là trung điểm AN →AM=MN=NC→AM=MN=NC

image  
20 tháng 12 2020

ai giup mik voi 

 

 

 

a: Xét ΔBAD có

M,Q lần lượt là tđiểm của AB và AD

nên MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N,P lần lượt là trung điểm của CB và CD

nên NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Từ (1) và (2) suy a MQ//NP và MQ=NP

=>MNPQ là hình bình hành

b: Xét ΔABC có

M,N lần lượt là trung điểm của BA và BC

nên MN là đường trung bình

=>MN=AC/2 và MN//AC

Để MNPQ là hình chữ nhật thì MN vuông góc với MQ

=>AC vuông góc với BD