K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2014

Để chứng minh điều trên Ta CM S(PBC) = S(MBCK).  (Vì có chung S(EBCF)

Vì AM = CK nên S(MBCK) = 1/2 S(ABCD), nên ta cần CM S(PBC) =1/2 S(ABCD)

Ta có: S(ABP) + S(PCD) + S(PBC) = S(ABCD) nên ta cần CM S(APB) + S(PCD) =1/2 S(ABCD)

Từ P ta kẻ 1 đường thẳng vuông góc với AB cắt AB tại G và CD (kéo dài) tại K

Ta có : S(ABP) + S(PCD) = (PGx AB)/2 + (PKxCD)/2=  (PG+PK)xAB/2  (AB =CD)

                                      = GKxAB/2 = 1/2 S(ABCD) (GK chiều cao của HBH)

Nên ta có S(PBC)= 1/2 S(ABCD)= S(MBCK)

Suy ra S(PEF) = S(BME) + S(CKF)


 

31 tháng 1 2016

nghỉ tết rùi mà vẫn hok ak???

cao nguyễn thu uyên Đã nghỉ đâu ==