Cho hình bình hành ABCD , tr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 4 2023

Trước hết ta chứng minh bổ đề sau (nếu em chưa học)

Cho 4 điểm A; B; C; D phân biệt sao cho \(AB||CD\), khi đó ta luôn có: \(S_{\Delta ACD}=S_{\Delta BCD}\)

C/m: từ A và B lần lượt kẻ \(AH\) và \(BK\) vuông góc CD \(\Rightarrow AH||BK\Rightarrow\) tứ giác AHKB là hình chữ nhật

\(\Rightarrow AH=BK\)

Do \(\left\{{}\begin{matrix}S_{\Delta ACD}=\dfrac{1}{2}AH.CD\\S_{\Delta BCD}=\dfrac{1}{2}BK.CD\end{matrix}\right.\) mà \(AH=BK\Rightarrow S_{\Delta ACD}=S_{\Delta BCD}\) (đpcm)

Quay lại bài toán, áp dụng bổ đề trên ta có: do N thuộc BC nên \(NC||AD\Rightarrow S_{\Delta NAD}=S_{\Delta CAD}\)  (1)

Tương tự, \(AM||CD\Rightarrow S_{\Delta ACD}=S_{\Delta MCD}\) (2)

(1);(2) \(\Rightarrow S_{\Delta NAD}=S_{\Delta MCD}\)

Từ D lần lượt kẻ \(DE\perp AN\) và \(DF\perp CM\)

\(\Rightarrow\left\{{}\begin{matrix}S_{\Delta NAD}=\dfrac{1}{2}DE.AN\\S_{\Delta MCD}=\dfrac{1}{2}DF.CM\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}S_{\Delta NAD}=S_{\Delta MCD}\\AN=CM\end{matrix}\right.\) \(\Rightarrow DE=DF\)

\(\Rightarrow\Delta_VDEK=\Delta_VDFK\left(ch-cgv\right)\)

\(\Rightarrow\widehat{EKD}=\widehat{FKD}\) hay KD là phân giác

NV
20 tháng 4 2023

loading...

n^3 + 3n^2 + 2n 

= n (n^2 + 3n + 2 )
= n ( n +1 ) ( n+2 )

Ta có n , n+1 và n +2 là ba số nguyên liên tiếp

=> n (n+1)(n+2) chia hết cho 6 ( vì chia hết cho 2 và 3 )

=> n^3 + 3n^2 + 2n chia hết cho 6

Mời bạn tham khảo:Câu hỏi của Nguyễn Như Đạt

Cho các sốx y εR , � thoả mãn: 5x + 2y - 6xy - 4x - 6y + 13 = 0 . Tính giá trị của biểuthức: M= (2x - y)2022  + (x - 2)2021 + (y - 3)2020

Đề bài mình thấy là 4xy thì làm được nha!

\(5x^2+2y^2-4xy-4x-6y+13=0\)

\(\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+\left(4x^2+y^2-4xy\right)=0\)

\(\left(x-2\right)^2+\left(y-3\right)^2+\left(2x-y\right)^2=0\)

Ta thấy: \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge\\\left(2x-y\right)^2\ge0\end{cases}0\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2+\left(2x-y\right)^2\ge0}\)

Mà \(\left(x-2\right)^2+\left(y-3\right)^2+\left(2x-y\right)^2=0\)

Bạn nhận xét rồi làm nốt  nha!

A hai lm bài lp 8 cơ à . Ghê ghê
Ko nhắn riêng đc