K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2018

A B D C H J K O I E

Gọi O là giao điểm của AC và BD. Theo tính chất hình bình hành thì O là trung điểm AC và BD.

Gọi H, I, J, L lần lượt là chân các đường cao hạ từ D, O, C, B xuống đường thẳng xy.

Ta thấy ngay DH // OI // CJ // KB.

Xét tam giác ACJ có O là trung điểm AC, OI // CJ nên OI là đường trung bình tam giác hay CJ = 2OI.    (1)

Xét hình thang vuông HDBK có O là trung điểm BD, OI // DH // BK nên OI là đường trung bình hình thang.

Vậy thì \(DH+BK=2OI\)                                                                                                                  (2)

Từ (1) và (2) suy ra CJ = DH + BK.

Suy ra \(\frac{1}{2}CJ.AE=\frac{1}{2}HD.AE+\frac{1}{2}BK.AE\)  hay \(S_{ACE}=S_{ADE}+S_{ABE}\)

3 tháng 2 2018

1 A B C D K 1 2 1 2 1 2

Ta có do \(K\in CD;CD//AB\Rightarrow\widehat{K1}=\widehat{A2}\)

Mà \(\widehat{A2}=\widehat{A1}\)(AK LÀ PHÂN GIÁC)

\(\Rightarrow\widehat{K1}=\widehat{A1}\Rightarrow\Delta ADK\)cân tại D => AD=DK

Tương tự ta cm được BC=CK 

=> AD+BC=DK+CK

Mà K nằm giữa C và D nên AD+BC=DK+CK=DC(đpcm)

18 tháng 10 2023

loading...  loading...  loading...  

20 tháng 12 2016

4

1 tháng 2 2017

có cách giải chi tiết ko pn

17 tháng 11 2021

a. Vì ABCD là hbh nên AB//CD hay AE//CF

Mà AE=CF nên AECF là hbh

b. Gọi M là giao AC và BD

Vì ABCD là hbh nên M là trung điểm AC và BD

Vì AECF là hbh mà M là trung điểm AC nên M là trung điểm EF

Vậy AC,BD,EF đồng quy tại M

a) ABCD là hình bình hành nên ta có AB=CD ta có EB=1/2AB và DF=1/2CD suy ra EB=DF ta lại có AB//CD hay EB//DF tứ giác DEBF có EB//DF và EB=DF nên tứ giác DEBF là hình bình hành ( vì có một cặp cạnh đối song song và bằng nhau )

b) gọi O là giao điểm hai đường chéo của hình bình hành ABCD, ta có O là trung điểm của BD DEBF là hình bình hành nên trung điểm O của BD cũng là trung điểm của EF vậy AC.BD.EE đồng quy tại O c) tam giác ABD có các đường trung tuyến AO,DE cắt nhau tại M nên OM=1/3OA và ON=1/3OC. ta có OA=OC nên OM=ON Tứ giác EMFN có các đường chéo cắt nhau tại trung điểm của mỗi đường OM=ON , OE=OF nên là hình bình hành

a: Xét tứ giác DEBF có

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: ta có: DEBF là hình bình hành

nên Hai đường chéo DB và EF cắt nhau tại trung điểm của mỗi đường(1)

Ta có:ABCD là hình bình hành

nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra BD,EF,AC đồng quy