K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 11 2019

\(3IA+2\left(IC+DI\right)=0\Leftrightarrow3IA+2DC=0\)

\(\Leftrightarrow3IO+3OA+2DA+2AC=0\Leftrightarrow3IO+3OA-2AD-4OA=0\)

\(\Leftrightarrow3IO-OA-2AD=0\Rightarrow3IO=OA+2AD\) (1)

\(JA-2JB+2JC=0\Leftrightarrow JA+2\left(BJ+JC\right)=0\)

\(\Leftrightarrow JA+2BC=0\Leftrightarrow JO+OA+2BC=0\)

\(\Leftrightarrow JO+OA+2AD=0\Rightarrow OJ=OA+2AD\) (2)

(1); (2) \(\Rightarrow OJ=3IO\) hay I;J;O thẳng hàng

Phân tích dài quá, ko hay lắm :(

10 tháng 8 2019

A B C D I J O

\(Ta\text{ }có\text{ }:3\overrightarrow{IA}+2\overrightarrow{IC}-2\overrightarrow{ID}=0\\ \Rightarrow3\overrightarrow{IA}+2\left(\overrightarrow{IC}-\overrightarrow{ID}\right)=0\\ \Rightarrow3\overrightarrow{IA}=-2\left(\overrightarrow{IC}-\overrightarrow{ID}\right)\\ \Rightarrow3\overrightarrow{IA}=-2\overrightarrow{DC}=2\overrightarrow{BA}\\ \Rightarrow\overrightarrow{IA}=\frac{2}{3}\overrightarrow{BA}\\ \Rightarrow I;B;A\text{ thẳng hàng},I\text{ nằm giữa }A;B\left(\frac{2}{3}>0;IA< BA\right)\)

\(\text{Lại có }:\overrightarrow{JA}-2\overrightarrow{JB}+2\overrightarrow{JC}=0\\ \Rightarrow\overrightarrow{JA}=2\left(\overrightarrow{JB}-\overrightarrow{JC}\right)\\ \Rightarrow\overrightarrow{JA}=2\overrightarrow{CB}=2\overrightarrow{DA}\\ \Rightarrow J;D;A\text{ thẳng hàng},D\text{ nằm giữa }J;A\left(2>0;JA>DA\right)\)

\(\text{Lại có }:O\text{ là trung điểm }AC;BD\left(\text{Tính chất hình bình hành}\right)\\ \Rightarrow\overrightarrow{JO}=\overrightarrow{JA}+\overrightarrow{AO}=-2\overrightarrow{AD}+\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{AB}\right)\\ =-2\overrightarrow{AD}+\frac{1}{2}\overrightarrow{AD}+\frac{1}{2}\overrightarrow{AB}=-\frac{3}{2}\overrightarrow{AD}+\frac{1}{2}\overrightarrow{AB}\)

\(\text{Mặt khác }:\overrightarrow{JI}=\overrightarrow{JA}+\overrightarrow{AI}=-2\overrightarrow{AD}+\frac{2}{3}\overrightarrow{AB}=\frac{4}{3}\left(-\frac{3}{2}\overrightarrow{AD}+\frac{1}{2}\overrightarrow{AB}\right)\\ \Rightarrow\overrightarrow{JI}=\frac{4}{3}\overrightarrow{JO}\\ \Rightarrow J;I;O\text{ thẳng hàng}\)

11 tháng 8 2019

cảm ơn bạn nha

23 tháng 7 2019

Cái dạng này mk ms đok qua nên có j sai bỏ qua nha :D

\(\overrightarrow{IA}+3\overrightarrow{IC}=0\Rightarrow\overrightarrow{IJ}+\overrightarrow{JA}+3\left(\overrightarrow{IJ}+\overrightarrow{JC}\right)=0\)

\(\Leftrightarrow4\overrightarrow{IJ}+\overrightarrow{JA}++3\overrightarrow{JC}=0\)

\(\overrightarrow{JA}+2\overrightarrow{JB}+3\overrightarrow{JC}=0\)

Trừ vế cho vế

\(\Rightarrow4\overrightarrow{IJ}=2\overrightarrow{BJ}\Leftrightarrow\overrightarrow{BJ}=2\overrightarrow{IJ}\)

=> 3 điểm I,J,B thẳng hàng

10 tháng 10 2021

t đăng kí chỉ để hỏi.

sao biết để thêm 'j' hay vậy

 

14 tháng 11 2021

\(a,\overrightarrow{AB}-\overrightarrow{DA}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{0}=\overrightarrow{AD}\)

\(b,\overrightarrow{AM}=\dfrac{\overrightarrow{AO}+\overrightarrow{AB}}{2}=\dfrac{\overrightarrow{AB}}{2}+\dfrac{\dfrac{1}{2}\overrightarrow{AC}}{2}=\overrightarrow{\dfrac{AB}{2}}+\dfrac{1}{4}\overrightarrow{AC}\)

\(=\overrightarrow{\dfrac{AB}{2}}+\dfrac{\overrightarrow{AB}+\overrightarrow{BC}}{4}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{\overrightarrow{BC}}{4}=\dfrac{1}{4}\overrightarrow{BC}+\dfrac{3}{4}\overrightarrow{AB}\left(1\right)\)

\(\overrightarrow{AN}=\overrightarrow{BN}-\overrightarrow{BA}=k.\overrightarrow{BC}+\overrightarrow{AB}\left(2\right)\)

\(\left(1\right)\left(2\right)A,M,N\) \(thẳng\) \(hàng\Leftrightarrow\dfrac{k}{\dfrac{1}{4}}=\dfrac{1}{\dfrac{3}{4}}\Leftrightarrow k=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
12 tháng 9 2017

Lời giải:

\(\overrightarrow{JA}-\overrightarrow{JB}-2\overrightarrow{JC}=\overrightarrow{0}\)

\(\Leftrightarrow \overrightarrow{BA}-2\overrightarrow{JC}=\overrightarrow{0}\)

\(\Leftrightarrow \frac{1}{2}\overrightarrow{BA}=\overrightarrow{JC}\)

Do đó, tập hợp điểm C nằm trên đường tròn tâm $C$ bán kính bằng \(\frac{AB}{2}\)

28 tháng 5 2022

AM+BM+DM=0
<=> AM+(BC+CM)+(DA+AM)=0
<=>2AM+(BC+DA)+CM=0
<=>2(1/3AC)-MC=0
<=>2/3AC - 2/3 AC=0
<=>0=0 (ĐPCM)