Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhà hàng Tôm hùm kính chào quý khách ĐC : 255 Nguyễn Huệ, Q tân bình , TP HCM nhà hàng của gđ mik rất mong dc đón các bn
A B D C H J K O I E
Gọi O là giao điểm của AC và BD. Theo tính chất hình bình hành thì O là trung điểm AC và BD.
Gọi H, I, J, L lần lượt là chân các đường cao hạ từ D, O, C, B xuống đường thẳng xy.
Ta thấy ngay DH // OI // CJ // KB.
Xét tam giác ACJ có O là trung điểm AC, OI // CJ nên OI là đường trung bình tam giác hay CJ = 2OI. (1)
Xét hình thang vuông HDBK có O là trung điểm BD, OI // DH // BK nên OI là đường trung bình hình thang.
Vậy thì \(DH+BK=2OI\) (2)
Từ (1) và (2) suy ra CJ = DH + BK.
Suy ra \(\frac{1}{2}CJ.AE=\frac{1}{2}HD.AE+\frac{1}{2}BK.AE\) hay \(S_{ACE}=S_{ADE}+S_{ABE}\)
1 A B C D K 1 2 1 2 1 2
Ta có do \(K\in CD;CD//AB\Rightarrow\widehat{K1}=\widehat{A2}\)
Mà \(\widehat{A2}=\widehat{A1}\)(AK LÀ PHÂN GIÁC)
\(\Rightarrow\widehat{K1}=\widehat{A1}\Rightarrow\Delta ADK\)cân tại D => AD=DK
Tương tự ta cm được BC=CK
=> AD+BC=DK+CK
Mà K nằm giữa C và D nên AD+BC=DK+CK=DC(đpcm)
MÌNH KO THẤY ĐƯỜNG KO THẤY BÀI GÌ HẾT
Ta có:
{ DE song song với AM (gt) => DE/ AM = BD / BM (Định lí Thalès)
{ DF song song với AM (gt) => DF / AM = CD / CM (Định lí Thalès)
=> DE / AM + DF / AM = BD / BM + CD / CM
<=> (DE + DF) / AM = BD / (BC/2) + CD / (BC/2) = (BD + CD) / (BC/2)
(Vì AM là trung tuyến trong tam giác ABC => M là trung điểm của BC => BM = CM = BC/2)
<=> (DE + DF) / AM = BC / (BC/2) = 2BC / BC = 2
<=> DE + DF = 2AM (điều phải chứng minh)
b)
- Xét tứ giác ANDM có: AN // DM (gt) và DN // AM (gt)
=> Tứ giác ANDM là hình bình hành => AN = DM
- Ta có: AN // BD (gt)
=> AN / BD = NE / DE (Định lí Thalès)
<=> NE = (DE . AN) / BD
- Ta có: DE + DF = 2AM (cm câu a)
<=> DE + (DE + NE + NF) = 2AM
<=> 2DE + EF = 2AM
<=> EF = 2AM - 2DE = 2(AM - DE)
<=> EF = 2. {[(DE . BM) / BD] - DE} = 2. [(DE . BM - DE . BD) / BD]
(do DE/ AM = BD / BM => AM = (DE . BM) / BD )
<=> EF = 2. [DE . (BM - BD) / BD]
<=> EF = 2. (DE . DM) / BD = 2 . (DE . AN) / BD (vì AN = DM)
<=> EF = 2NE
<=> NE = EF / 2
=> N là trung điểm của EF
Vậy NE = NF (điều phải chứng minh)