K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

a) vì tứ giác ABCD là hình bình hành

=> AB // CD

=>AB // DG

=>EB/ED =  AE/EG (1)

vì ABCD là hình bình hành

=> AD // BC

=> AD // BK

=>AE/EG = EK/AE (2) 

TỪ (1) VÀ (2)

=> AE/EG = EK/AE 

=> AE ^2 = EK . EG (đpcm)

b) vì AB // DG

=> AE/AG = BE/BD 

MÀ AD // BK

=> AE /AK= DE /BD

CỘNG 2 VẾ TRÊN

=> AE/AG  + AE/AK  = BE/BD  + DE/BD  = 1

<=> AE ( 1/AG  + 1/AK  ) = 1

<=> 1/AG  + 1/AK  = AE 1 (đpcm)

c) vì AD // BK

=> BK/AD  = EB/DE  

CÓ AB // DG

=> AB/DG  = BE /DE

=> BK/AD  = AB/DG  

=> BD . DG = AB . AD mà AB, AD là các cạnh của hình bình hành ABCD

=> AB . AD không đổi

=> BK . DG không đổi (đpcm)

26 tháng 1 2017

Hình bạn tự vẽ nhahehe

a) Chứng minh AB//DG và AD//BF

Từ đó theo Ta lét ta có

\(\Delta\)ADE có AD//BF ; F\(\in\)AE;B\(\in\)DE

\(\Rightarrow\)\(\frac{AE}{EK}=\frac{DE}{BE}\) (1)

\(\Delta\)DEG có DG//AB;A\(\in\)GE;B\(\in\)DE

\(\Rightarrow\)\(\frac{EG}{AE}=\frac{DE}{EB}\) (2)

Từ (1)(2) thì \(\frac{AE}{EK}=\frac{EG}{AE}\)

\(\Rightarrow\)\(AE^2=EG.EK\)

b)Chứng minh tương tự câu a theo talet có

\(\Delta\)ADE có \(\frac{AE}{AK}=\frac{DE}{DB}\)

\(\Delta\)DEG có\(\frac{AE}{AG}=\frac{BE}{BD}\)

Nên \(\frac{AE}{AK}+\frac{AE}{AG}=\frac{DE}{DB}+\frac{BE}{DB}\)

Hay \(AE\left(\frac{1}{AK}+\frac{1}{AG}\right)=\frac{BE+DE}{DB}=\frac{DB}{DB}=1\)

\(\Rightarrow\)\(\frac{1}{AK}+\frac{1}{AG}=\frac{1}{AE}\)

c)câu c sory muộn quá chưa nghĩ đượcgianroi

1 tháng 2 2018

A B D C E G K a b

a) Vì ABCD là hình bình hành ( gt )

Và K thuộc BC nên

AD // BK Theo hệ quả của định lý Ta-let ta có :

\(\frac{EK}{AE}=\frac{EB}{ED}=\frac{AE}{EG}\Rightarrow\frac{EK}{AE}=\frac{AF}{EG}\Rightarrow AE^2=EK.EG\)

b) Ta có :

\(\frac{AE}{EK}-\frac{DE}{DB};\frac{AE}{AG}=\frac{BE}{BD}\)nên

\(\frac{AE}{AK}+\frac{AE}{AG}-\frac{BE}{BD}+\frac{DE}{DB}-\frac{BD}{BD}-1\Rightarrow\frac{1}{AE}=\frac{1}{AK}+\frac{1}{AG}\)

c) bạn tự làm tiếp mỏi tay quá

6 tháng 6 2019

XVGMy6y.png

Giải nốt bài của Pác Hiếu:3

Đặt \(AB=a',AD=b\)

Áp dụng Đ/L Thales vào tam giác ABK,ta có:

\(\frac{BK}{KC}=\frac{AB}{CG}\Rightarrow\frac{a'}{CG}=\frac{BK}{KC}\left(1\right)\)

Áp dụng Đ/L Thales vào tam giác ADG,ta có:

\(\frac{CG}{DG}=\frac{CK}{AD}\Rightarrow\frac{CG}{DG}=\frac{CK}{b}\left(2\right)\)

Nhân vế theo vế của (1);(2) ta có:

\(\frac{BK}{b}=\frac{a'}{DG}\Rightarrow BK\cdot DG=a'b\)  không đổi.

9 tháng 3 2017

Do AB song song Cd 

=> Áp dụng định lí Ta - lét được \(\frac{AB}{DG}=\frac{AE}{EG}=\frac{BE}{DE}\)

=> AB . EG = DG . AE

Do AD song song BK nên áp dụng định lí Ta lét được

\(\frac{AE}{AK}=\frac{DE}{BD}\)

Do AB sog song với CG nên áp dụng định lí Ta lét được

\(\frac{AE}{AG}=\frac{BE}{BD}\)

=> \(\frac{AE}{AK}+\frac{AE}{AG}=\frac{BE}{BD}+\frac{DE}{BD}=1\)

=>\(\frac{1}{AE}=\frac{1}{AK}+\frac{1}{AG}\)

Ta có \(\frac{BK}{AD}=\frac{AB}{DG}=\frac{BE}{DE}\)

=>\(BK.DG=AB.AD\left(KHÔNG\right)DOI\)

10 tháng 3 2017

bó tay .com

15 tháng 4 2015

b)

AB // DG suy ra AE / AG = BE / BD

AD // BC suy ra AE / AK = DE / BD

Suy ra AE / AG + AE / AK = BE /BD + DE / BD = BD / BD = 1

Chia 2 vế cho AE

1 / AG + 1 / AK = 1/  AE

15 tháng 4 2015

a) AB // CG suy ra AE / EG = BE / ED

AD // BC suy ra EK / AE = BE / ED

Suy ra AE / EG = EK / AE

Suy ra AE^2 = EK.EG