Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do tứ giác ADEF là hình vuông =) 2 đường chéo AE và DF đồng thời là đường phân giác
=) \(\widehat{O\text{D}A}\)=\(\widehat{\text{OA}F}\)( cùng = 450 )
Ta có : \(\widehat{FAD}\)+\(\widehat{DAB}\)+\(\widehat{HAB}\)+\(\widehat{FAH}\)= 3600
900 + \(\widehat{DAB}\)+900 +\(\widehat{FAH}\)= 3600
1800 +\(\widehat{DAB}\)+\(\widehat{FAH}\) = 3600
\(\widehat{DAB}\)+\(\widehat{FAH}\) = 1800
Mà \(\widehat{DAB}\)+\(\widehat{A\text{D}C}\)= 1800 ( 2 góc ở vị trí trong cùng phía )
=) \(\widehat{FAH}\)= \(\widehat{A\text{D}C}\) ( cùng cộng với \(\widehat{DAB}\)=1800 )
=) \(\widehat{FAH}\)+ \(\widehat{FAO}\)= \(\widehat{A\text{D}C}\)+ \(\widehat{O\text{D}A}\)
=) \(\widehat{OAH}\)= \(\widehat{O\text{D}C}\)
b) Do tứ giác ABGH là hình vuông =) AH=AB
Mà AB = CD
=) AH = CD
Xét tam giác ODC và tam giác OAH có ;
OD = OA
\(\widehat{O\text{D}C}\)= \(\widehat{OAH}\) ( chứng minh phần a)
CD = AH (chứng minh trên )
=) Tam giác ODC = Tam giác OAH (c-g-c)
=) OC = OH ( 2 cạch tương ứng )
1: Xét tứ giác AECF có
O là trung điểm của AC
O là trung điểm của FE
Do đó: AECF là hình bình hành
1/
Xét tam giác AOD và tam giác BOC có
^CBD=^ADB; ^ACB=^CAD
=> tam giác AOD đồng dạng với tam giác BOC => OA/OC=OB/OD => OA.OD=OC.OB (dpcm)
2/
Ta có ^ABC=^ADC (2 góc đối hình bình hành)
Xét hai tam giác vuông BCE và tam giác vuông DCG có
^ECB=^GDC (cùng bù với ^ABC=^ADC)
=> tam giác BCE đồng dạng với tam giác DCG