K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
18 tháng 2 2017
Từ D kẻ // FE cắt AC ở H. Từ B kẻ // FE cắt AC ở I. Gọi K là giao của AC và BD.
Áp dụng Ta-lét vào tam giác ADK ,ta có: \(\frac{AD}{AF}=\frac{AH}{AO}\)(1)
Áp dụng Ta-lét vào tam giác ABK,ta có :\(\frac{AB}{AE}=\frac{AI}{AO}\)(2)
Từ (1);(2),ta có :\(\frac{AD}{AF}+\frac{AB}{AE}=\frac{AH+AI}{AO}=\frac{\left(AK+KH\right)+\left(AK-IK\right)}{AO}=\frac{2AC}{AO}\)(Vì KH=IK).
A B C D H K I E F d M
Qua B và D kẻ hai đường thẳng song song với đường thẳng D và cắt AC tại H và K.
Gọi giao điểm 2 đường chéo của hình bình hành ABCD.
Áp dụng định lí Ta-lét, ta có các tỉ số :
\(\frac{AB}{AE}=\frac{AH}{AM}\); \(\frac{AD}{AF}=\frac{AK}{AM}\)
\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{AH}{AM}+\frac{AK}{AM}=\frac{AH+AK}{AM}=\frac{2AK+IH+IK}{AM}\)(1)
Ta có : \(\Delta BHI=\Delta DKI\left(gcg\right)\)
\(\Rightarrow IH=IK\)
Thay vào (1) ta được :
\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{2AK+2IK}{AM}=\frac{2\left(AK+IK\right)}{AM}=\frac{2AI}{AM}\)
Mà \(AI=\frac{1}{2}AC\Rightarrow2AC=AI\)
\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AM}\)(Đpcm)