K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2019

Câu a thôi nhé:

do ABCDlà hbh

=> AD=BC

AB//CD=>NB//CD

AD//BC => AD//CK

vì NB//CD

=>DMMK=ADCKDMMK=ADCK (theo hệ quả ta-lét)

mà AD=BC

=> DMMK=BCCKDMMK=BCCK (*)

vì AD//CK

=> DNDK=BCCKDNDK=BCCK (theo đl ta-lét) (**)

Từ (*) và (**) ta có

DNDK=DMMKDNDK=DMMK =>MKDK=DMDNMKDK=DMDN

ta có

DMDN+DMDK=MKDK+DMDK=DKDK=1DMDN+DMDK=MKDK+DMDK=DKDK=1 (đpc

Câu b ko biết làm

P.s:Hok tốt

a: Xét ΔKAB và ΔKCM có

góc KAB=góc KCM

góc AKB=góc CKM

=>ΔKAB đồng dạng với ΔKCM

=>KB/KM=AB/CM=AB/MD

Xét ΔIAB và ΔIMD có

góc IAB=góc IMD

góc AIB=góc MID

=>ΔIAB đồng dạng với ΔIMD

=>IA/IM=AB/MD

=>IA/IM=KB/KM

=>MI/IA=MK/KB

Xét ΔMAB có MI/IA=MK/KB

nên IK//AB

b: Xét ΔADM có EI//DM

nên EI/DM=AI/AM

=>EI/CM=AI/AM

Xét ΔBMC có KF//MC

nên KF/MC=BK/BM

Xét ΔMAB có IK//AB

nên IK/AB=MK/MB=MI/MA

=>BK/BM=AI/AM

=>EI/DM=KF/DM

=>EI=KF

c: Xét ΔOAN và ΔOCM có

góc OAN=góc OCM

góc AON=góc COM

=>ΔOAN đồng dạng với ΔOCM

=>OA/OC=AN/CM

Xét ΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOb=góc COD

=>ΔOAB đồng dạng với ΔOCD

=>OA/OC=AB/CD

=>AB/CD=AN/CM

=>AB/AN=CD/CM=2

=>AB=2AN

=>N là trung điểm của AB

10 tháng 10 2021

a: Ta có: AM+MB=AB

CN+ND=CD

mà AB=CD

và AM=CN

nên MB=ND

Xét tứ giác BMDN có 

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

Suy ra: DM//BN

10 tháng 10 2021

mik cần câu b, c cơ

22 tháng 9 2019

bn tự kẻ hình nha!

a) ta có: AB = DC ( ACBD là hình bình hành)

----> BM = CN ( = 1/2. AB = 1/2 . DC)

mà BM // CN

-----> BMNC là h.b.h

b) xét tam giác AMD và tam giác CNB

có: AM = CN ( = 1/2.AB = 1/2.CD)

AD = BC (gt)

^DAM = ^NCB (gt)

-----> tg AMD = tg CNB (c-g-c)

-----> DM = NB ( 2 cạnh t/ ư)

c) AN cắt DM tại I, MC cắt BN tại K. chứng minh : AC,BD,MN,IK

bài làm

Gọi AC cắt DB tại E

ta có: tg AMD = tg CNB (cmt)

-----> ^AMD = ^CNB

mà ^AMD = ^MDN ( AB//DC)

-----> ^CNB = ^MDN

mà ^CNB, ^MDN nằm ở vị trí đồng vị 

-----> DM// BN

và DM = BN (pb)

-----> DMBN là h.b.h

-------> BD cắt MN tại E ( do 2 đường chéo của h.b.h cắt nhau tại trung điểm của mỗi đường)

tương tự  bn cx chứng minh: MINK là h.b.h   ( MI = NK = 1/2.DM = 1/2.BN)

-----> MN cắt IK tại E

------------> AC,BD, MN,IK đồng quy tại E