Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. A B C D M N K E F
a) + AN // CD \(\Rightarrow\dfrac{DM}{MN}=\dfrac{MC}{MA}\)
+ AD // CK \(\Rightarrow\dfrac{MK}{MD}=\dfrac{MC}{MA}\)
\(\Rightarrow\dfrac{MD}{MN}=\dfrac{MK}{MD}\) \(\Rightarrow MD^2=MN\cdot MK\)
b) + Qua M kẻ EF // AB // CD
+ AD // CK
=> \(\dfrac{DM}{MK}=\dfrac{AM}{MC}\Rightarrow\dfrac{DM}{DM+MK}=\dfrac{AM}{AM+MC}\) (1)
\(\Rightarrow\dfrac{DM}{DK}=\dfrac{AM}{AC}=\dfrac{AE}{AD}\)
+ ME // AN
\(\Rightarrow\dfrac{DM}{DN}=\dfrac{DE}{DA}\)
=> \(\dfrac{DM}{DN}+\dfrac{DM}{DK}=\dfrac{DE}{DA}+\dfrac{AE}{AD}=1\)
\(\Rightarrow DM\left(\dfrac{1}{DN}+\dfrac{1}{DK}\right)=1\)
\(\Rightarrow\dfrac{1}{DN}+\dfrac{1}{DK}=\dfrac{1}{DM}\)
* Cm : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
+ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\) ( theo tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\) ( để giải thích cho (1) )
a)
Vì \(AB\parallel CD\) nên áp dụng định lý Ta-let ta có:
\(\frac{DM}{MN}=\frac{MC}{AM}(1)\)
Kẻ \(MT\parallel AB\parallel CD\). Áp dụng định lý Ta-let:
+) Cho tam giác $KDC$: \(\frac{MK}{DK}=\frac{MT}{DC}=\frac{MT}{AB}\)
+) Cho tam giác $ACB$: \(\frac{MT}{AB}=\frac{MC}{AC}\)
\(\Rightarrow \frac{MK}{DK}=\frac{MC}{AC}\Rightarrow \frac{MK}{MK+DM}=\frac{MC}{MC+AM}\)
\(\Rightarrow \frac{MK}{DM}=\frac{MC}{AM}(2)\)
Từ \((1);(2)\Rightarrow \frac{DM}{MN}=\frac{MK}{DM}\Rightarrow DM^2=MN.MK\) (đpcm)
b)
Áp dụng liên hoàn định lý Ta-let cho các đoạn song song:
\(\frac{MK}{DK}=\frac{MT}{DC}=\frac{MT}{AB}\)
\(\frac{MT}{AB}=\frac{MC}{AC}\)
\(\Rightarrow \frac{MK}{DK}=\frac{MC}{AC}\Leftrightarrow 1-\frac{MK}{DK}=1-\frac{MC}{AC}\)
\(\Rightarrow \frac{DM}{DK}=\frac{AM}{AC}(1)\)
Và: \(\frac{DM}{MN}=\frac{MC}{AM}\Rightarrow \frac{DM}{DM+MN}=\frac{MC}{MC+AM}\)
\(\Rightarrow \frac{DM}{DN}=\frac{MC}{AC}(2)\)
Từ \((1);(2)\Rightarrow \frac{DM}{DK}+\frac{DM}{DN}=\frac{AM+MC}{AC}=1\)
\(\Rightarrow \frac{1}{DK}+\frac{1}{DN}=\frac{1}{DM}\)
Ta có đpcm.